

»x**,}2S$fi£$& SCH00L

DUDLEY KNOX UBRARY
POSTGRADUATE SCHOOL

MONTEREY CA 93943-5101

\<*\

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

RESOURCE USAGE FOR ADAPTIVE C4I

MODELS IN A HETEROGENEOUS COMPUTING
ENVIRONMENT

by

N. Wayne Porter

June 1999

Thesis Advisor: Debra Hensgen

Co-Advisor: William G. Kemple

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: RESOURCE USAGE FOR ADAPTIVE C4I MODELS IN

A HETEROGENEOUS COMPUTING ENVIRONMENT

6. AUTHOR(S) Porter, N. Wayne

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

1 1 . SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT:

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE:

13. ABSTRACT (maximum 200 words)
The goal of the Management System for Heterogeneous Networks (MSHN) is to provide a resource management system (RMS) to

enable adaptive applications to use multiple sets of shared resources while accounting for dynamically changing priorities and

environments. This RMS must be capable of providing each subscriber process with its required Quality of Service (which might include

security considerations, deadlines, user priorities, and preferences) in a heterogeneous computing environment in which many processes

are competing for shared resources.

Applying this RMS technology to C4I modeling and simulation applications would enable on-scene Commanders to simulate complex

elements of the decision process in order to optimize the use of forces and materiel.

The objective of this thesis was to transparently intercept operating system calls made by a robust, C4I modeling application, the

Extended Air Defense Simulation (EADSIM), in order to weigh the resources required against the confidence level of the outcomes

obtained. Specifically, the goal was to determine resource usage required to run the application using both Monte Carlo simulation and

deterministic simulation. MSHN needs this type of information to determine which version of an application to execute, in order to

provide the best Quality of Service, while meeting operational deadlines.

14. SUBJECT TERMS C4I, Wrapper, Resource Management System, Intercept System Calls,

Distributed System, Modeling and Simulation, Warfighter, Client Library, MSHN, Heterogeneous

Computing, Quality of Service, Stochastic, Deterministic, Monte Carlo

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICA-

TION OF REPORT

Unclassified

18. SECURITY CLASSIFI-

CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-

TION OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

JJAVAL POSTGRADUATE-
MONTEREY, CA

Approved for public release; distribution is unlimited.

RESOURCE USAGE FOR ADAPTIVE C4I MODELS IN A HETEROGENEOUS
COMPUTING ENVIRONMENT

N. Wayne Porter

Lieutenant Commander, United States Navy Reserve

B.A., University of Southern California, 1974

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June ^999 ^

Dudley knox library
navai. postgraduate school
MONTEREY CA 93943-5101

ABSTRACT

The goal of the Management System for Heterogeneous Networks (MSHN) is to

provide a resource management system (RMS) to enable adaptive applications to use

multiple sets of shared resources while accounting for dynamically changing priorities

and environments. This RMS must be capable of providing each subscriber process with

its required Quality of Service (which might include security considerations, deadlines,

user priorities, and preferences) in a heterogeneous computing environment in which

many processes are competing for shared resources.

Applying this RMS technology to C4I modeling and simulation applications

would enable on-scene Commanders to simulate complex elements of the decision

process in order to optimize the use of forces and materiel.

The objective of this thesis is to transparently intercept operating system calls

made by a robust, C4I modeling application, the Extended Air Defense Simulation

(EADSIM), in order to weigh the resources required against the confidence level of the

outcomes obtained. Specifically, the goal is to determine resource usage required to run

the application using both Monte Carlo simulation and deterministic simulation. MSHN

needs this type of information to determine which version of an application to execute, in

order to provide the best Quality of Service, while meeting operational deadlines.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. C4I Modeling and Simulation in a Distributed Environment l

B. Scope of this Thesis... 6

C. Major Contributions of This Thesis 7

D. Organization 8

II. THE ROLE OF MSHN AND RELATED WORK 9

A. The Need for Distributed Systems 9

B. Three Middleware Standards and Projects for Distributed Systems ... 1

1. CORBA 11

2. COMPASS 15

3. ENSEMBLE 18

C. The Role Of MSHN 22

1. MSHN Architecture 24

D. Related Work 26

E. Summary 27

III. EADSIM 29

A. Operational Architecture 30

B. System Architecture 30

C. Technical Architecture 33

1. Scenario Generation 34

D. Summary 36

IV. EXPERIENCES WRAPPING A C4I MODEL 37

A. Intercepting System Calls with "Wrappers" 37

B. Wrapping EADSIM 39

C. Summary 44

V. PROVIDING GOOD QUALITY OF SERVICE WITH LIMITED
RESOURCES IN A C4I MODELING APPLICATION 47

A. Why EADSIM? 47

B. The Demo300 Scenario 48

C. Choosing a Measure Of Effectiveness 53

D. Summary 57

VI. A DESCRIPTION OF THE EXPERIMENT 59

A. Hardware and Operating Systems 59

1. EADSIM Hardware and Operating System Requirements 59

2. Equipment Used in Experiment 60

B. Experiment Methodology 61

C. Results from Wrapped Stochastic Runs 64

1. Resource Measurements 64

2. Observed Simulation Outcomes 66

VI

1

D. Results from Wrapped Deterministic Runs 67

1. Resource Measurements 67

2. Computed Outcome Probabilities 69

E. Measuring the Overhead of the Wrappers 70

F. Weighing the Simulation Results Using Our Measure of Effectiveness 74

G. Summary 78

VII. CONCLUSIONS AND FUTURE WORK 79

A. Conclusion 79

B. Future Work 80

1. Development of aMSFfN Application Emulator 80

2. Dynamically Determining Distribution Statistics for Resources in a Distributed

Environment 81

3. Refining a Model for Use in Scheduling in MSHN 81

4. Testing Resource Monitoring Tools on a Win32/Intel Platform 82

5. Expansion of Existing MSFIN Wrapper Functionality 82

APPENDIX A. MODIFIED README-FIRST FILE 83

APPENDIX B. MSHN LIBRARY MAKEFILE2 87

APPENDIX C. MSHN_SYSCALL_LIB.CC 89

APPENDIX D. MSHN_MONITOR_RRD_CLASS.CC 115

APPENDIX E. RUN SCRIPT FORDEMO300 127

APPENDIX F. RUN SCRIPT FOR TRANSFER OF DATA 129

APPENDIX G. RUN SCRIPT FOR TRANSFER OF DETERMINISTIC DATA. 131

APPENDIX H. MSHN WRAPPER OUTPUT: MONTE CARLO TRIALS 133

APPENDIX I. MSHN WRAPPER OUTPUT: DETERMINISTIC TRIALS 151

APPENDIX J. PAPA1 REPORT 157

APPENDIX K. PSTAT OUTPUT: DETERMINISTIC TRIALS 169

APPENDIX L: ACRONYMS 173

LIST OF REFERENCES 175

INITIAL DISTRIBUTION LIST 181

Vlll

LIST OF FIGURES

Figure 1. 1 Similarities between Lawson-Moose Cycle and the OODA Loop. After

Ref. [PEND93] 3

Figure 2. 1 Common Object Request Broker Architecture. From Ref.[Vino96].... 13

Figure 2. 2 SPAWAR Presentation Slide of COMPASS. After Ref.[MCSW99] ... 16

Figure 2. 3 COMPASS Software Architecture. From Ref. [MCSW98] 16

Figure 2. 4 COMPASS Capable Modeling and Simulation and C4I Systems. After

Ref. [MCSW98] 1

8

Figure 2. 5 When the Environment Changes, the Opportunity to Adapt is Passed

Up the Protocol Stack Until a Layer Adapts or the Application is Notified

(Requiring Reconfiguration). After Ref.[HAYD97] 20

Figure 2. 6 The Ensemble Architecture. After Ref.[HAYD97] 22

Figure 2. 7 MSHN's Conceptual Architecture. From Ref.[HENS99] 25

Figure 3. 1 The Three Elements of EADSIM. After Ref. [METH98] 31

Figure 3. 2 The Four Run-Time Processes of EADSIM. After Ref. [METH98] 32

Figure 3. 3 EADSIM Interprocess Communication via Sockets. After Ref.

[METH98] 33

Figure 3. 4 Hierarchy of Data Builds an EADSIM Scenario. After Ref. [TELE98]. 35

Figure 5. 1 Offensive Missile Targets. After [EADS98] 49

Figure 5. 2 Offensive Strike Aircraft and Tactical Missiles. After [EADS98] 50

Figure 5. 3 Defensive C2 Sensors, Reconnaissance, Surveillance and Early Warning
Aircraft. After [EADS98] 51

Figure 5. 4 Deconfliction is Coordinated Among the Defensive SAM and DCA
Commanders. After [EADS98] 52

Figure 5. 5 Counter Offensive Targets. After [EADS98] 53

Figure 6. 1 EADSIM Minimum Hardware and Software Requirements as Stated in

EADSIM User's Guide 60

Figure 6. 2 Sample Red Action History Report Summarizing All Red Missile Hits

and Air-to-Air Combat Successes Against Blue Assets. After [EADS98] 67

Figure 6. 3 Testing the Null Hypothesis that the Probability of at Least One Missile

Reaching Its Target is .711 76

IX

LIST OF TABLES

Table 1: Resources to Monitor. From Ref. [SCHN98] 39

Table 2: Configuration of SGI and Sun Workstations Used in Experiment 61

Table 3: Mean Resource Usage, Over 30 Monte Carlo Trials, as Measured by

MSHN Wrapper 66

Table 4: Mean Resource Usage for 30 Deterministic Trials, as Measured by MSHN
Wrapper 68

Table 5: Mean Cumulative CPU Times Reported by PSTAT Function (Planner

Mode) 70

Table 6: Mean Cumulative CPU Times Reported by MSHN Wrapper 71

Table 7: Comparison of Predicted and Observed Outcomes 75

XI

Xll

EXECUTIVE SUMMARY

The Defense Advanced Research Projects Agency (DARPA)-sponsored

Management System for Heterogeneous Networks (MSHN) project is a sub-component

of the DARPA QUORUM program. The goal of this project, as well as the program at

large, is to provide a resource management system (RMS) to enable military computer

applications to use multiple sets of shared resources while accounting for dynamically

changing priorities and environments. MSHN's RMS must be capable of providing each

subscriber process with its required Quality of Service (which might include security

considerations, deadlines, user priorities, and preferences) in a heterogeneous computing

environment in which many processes are competing for shared resources. Rather than

establishing this RMS as stand-alone software, the MSHN architecture is designed as an

integrated system, integrated with and incorporating a variety of distributed system tools

to reap the maximum benefits from available resources.

In a military environment such an integrated system might mean offering the

Commander the opportunity to select the most appropriate application, or version of an

application, capable of executing within a specified time, at the proper security level, in

order to deliver the best achievable answer within his stated time constraints. Applying

this technology to robust C4I modeling and simulation applications would enable on-

scene Commanders or mission planners to simulate complex elements of the decision

process in order to optimize the use of forces and materiel.

The need for robust C4I modeling and simulation in support of the tactical

commander, the "Warfighter," has been established in numerous Joint Warrior

Interoperability Demonstrations, Fleet Battle Experiments, and Joint and service-specific

exercises. However, to make the use of such models practical in a heterogeneous

computing environment, the resource management concepts addressed by MSHN are

needed.

Key to the implementation of MSHN is the requirement for adaptive and

adaptation aware applications. Adaptive applications exist in different versions capable

of producing like results (though possibly offering varying degrees of QoS). MSHN

would monitor the use of such adaptive applications and would be able to terminate one

xin

version and start another, possibly from the beginning, if it perceived the user's QoS

requirements were not being met by the currently executing version. In a tactical

environment, this means that the transition to improved QoS recommended by the MSHN

RMS, if accepted by the decision-maker, would transparently enhance his or her mission

effectiveness while remaining within given time constraints.

This thesis presents the methodology of intercepting, or wrapping, system calls

made by the Extended Air Defense Simulation (EADSIM), a robust C4I, air and missile

warfare modeling application, in order to determine the resources required to execute the

program on a stand-alone workstation. Having demonstrated the ability to measure the

application's resource usage without requiring access to source code, an experiment is

described in which the resource usage is measured running the application in both Monte

Carlo simulations and deterministic simulations. The outcomes obtained from running

EADSIM in both deterministic and stochastic simulations are then weighed against each

other. The overhead associated with the MSHN wrapper, a modified C library used to

intercept system calls, is also measured and possible causes of this overhead are

discussed.

The research conducted for this thesis led to the realization that the MSHN

wrapper needs to be expanded to collect finer grained information. Specifically, send(),

sendto(), sendmsg(), recv(), recvfrom(), recvmsg(), select(), and

listen() system calls may need to be wrapped. Additionally, more information may

be required from the current wrapper. Finally, the Binomial distribution was used to help

evaluate the trade-off between the fidelity of results from deterministic simulations and

stochastic simulations. It was concluded that counter-missile events cannot be assumed

to be independent in order to develop a measure of effectiveness to compare the

deterministic version of EADSIM with the stochastic version. However, it was shown

that the deterministic version of EADSIM offers valuable information while requiring

approximately 1/20 the compute resources required by the stochastic version.

xiv

ACKNOWLEDGEMENTS

I would like to sincerely thank Kate, Keegan, Ryan, and Shannon for their

patience, sacrifice, understanding, and support. I would also like to thank my father for

the dream, my mother and my sister for helping to make it possible. Professionally, I

would like to thank my advisors, Professors Hensgen and Kemple, and two brilliant

classmates, MAJ Matt Schnaidt, USA and MAJ Tom Cook, USA.

xv

XVI

I. INTRODUCTION

This thesis investigates the need for adaptive 1
, combat modeling; specifically as it

relates to Command, Control, Communications, Computers and Intelligence (C4I).

Further, it presents the results and analysis of resource measurement experiments run

using the Extended Air Defense Simulation (EADSEVI) program. The purpose of these

experiments is to obtain data to facilitate the comparison of distributions of resources

required to run the EADSEVI program stochastically and the resources required to run it

deterministically, weighing confidence levels of the results against the resources required.

A. C4I MODELING AND SIMULATION IN A DISTRIBUTED
ENVIRONMENT

Future military missions will be highly diverse, including operations other

than war (OOTW), often undertaken by joint, combined, or coalition

forces. However, existing command support tools are not flexible enough

to aid commanders in planning for such diverse and dynamic missions.

[DESI98]

The need for sophisticated C4I modeling and simulation2 applications to support

strategic planning has been accepted since the early part of the twentieth century when

Frederick Lanchester developed his linear and square law equations during the First

World War. However, the advent of "network-centric warfare," the concept of

metacomputing, advances in communication technologies (offering dramatic increases in

data transfer rates), and the ability to take better advantage of distributed systems have

presented the opportunity to apply these same models and simulations in an operational

environment for use by the Warfighter in tactical planning.

1 Adaptive computer applications are those applications that, in order to support varying Quality of Service

requirements, exist in different versions capable of producing like results. Adaptive applications should be

idempotent, allowing them to be re-started in another version without corrupting any resources.

- Use of the terms "simulation" and "modeling" in this paper are in accordance with military common

usage. The Department of Defense defines a "model" as: "A physical, mathematical, or otherwise logical

representation of a system, entity, phenomenon, or process." "Simulation" is defined as: "A method of

implementing a model over time." [MSMP95]

The implementation of the Global Command and Control System (GCCS) in

1996 heralded a major technological advance from its predecessor, the World Wide

Military Command and Control System. GCCS software is a suite of applications

intended to operate over a global network in support of the command and control mission

of the United States and her coalition partners. As such it would seem to be a logical

candidate as a venue for C4I modeling and simulation packages. The utility of having

robust planning and decision tools available to the on-scene commander and his staff is

obvious if (and only if) such tools can deliver data within very limited time constraints

and with sufficient fidelity without robbing resources needed for the execution of such

plans.

Department of Defense Joint Publication 1 defines command and control as

follows:

The exercise of authority and direction by a properly designated

commander over assigned forces in the accomplishment of the mission.

Command and Control functions are performed through an arrangement

for personnel, equipment, communications, facilities, and procedures

which are employed by a commander in planning, directing, coordinating

and controlling forces and operations in the accomplishment of the

mission. [JOTN91]

This definition was used by Frank Snyder [SNYD93] to break out three

fundamental elements of command and control: 1) the command function; 2) the

command and control process; and, 3) command, control and communications (C3)

systems (C3 systems have more recently been expanded to include computers and

intelligence, resulting in the popular use of "C4I systems" vice simply "C3 systems"). In

addition to providing us a three sided prism through which we might diffuse the

complicated spectrum of command and control, Snyder identified two essential variables

that impinge on every aspect of command and control, particularly during combat: time

and uncertainty. It is in an attempt to aid the decision-makers (the commanders) in

successfully managing, or balancing, these two variables and their effects that modeling

and simulation provide ready tools. This desire for a "balanced" response underscores

the need for a means to manage computing resources (resource management) so as to

ensure that high priority applications will execute with acceptable timeliness and level of

confidence.

The Lawson-Moose C4I Cycle (Figure 1.1) provides a graphic depiction of the

command and control decision process, commonly referred to as the "OODA" Loop,

wherein the commander observes his environment (friendly and enemy forces, weather,

terrain), processes the sensed information, compares his present state to the desired state,

decides upon a course of action, and acts upon his/her decision.

Lawson-Moose C2 Cycle

Desired

State

The OODA Loop: Observe, Orient,

Decide, Act

Figure 1. 1 Similarities between Lawson-Moose Cycle and the OODA Loop. After

Ref. [PEND93]

This cycle demonstrates each of the three elements of command and control noted

earlier: the process (planning, directing, coordinating and controlling forces in the

accomplishment of the mission); the command function (the exercise of authority and

direction by a properly designated commander); and the system (the arrangement of

personnel, equipment, communications, facilities and procedures which are employed by

the commander). Each of these elements, within the context of the decision cycle, offers

an opportunity for a model to assist the decision maker in improving his or her ability to

make the right decision, thereby lessening uncertainty in a timely manner.

In 1989 and 1990 the US Air Force Center for Studies and Analysis was using a

raid simulation model, then-called C3ISIM, to study command, control, communications,

and intelligence in various programmed scenarios [CASE91]. Developed for the US

Army Space and Missile Defense Command (SMDC), C3ISIM (now known as

EADSIM-Extended Air Defense Simulation) is an analytic, Monte Carlo3
, and

deterministic model of joint and combined force air and missile warfare, used for

scenarios ranging from few-on-few engagements to theater-wide applications. It is a

workstation hosted, system-level simulation used to assess the effectiveness of air and

missile defense systems against a spectrum of air and surface-launched threats. EADSIM

models fixed and rotary wing aircraft, tactical ballistic missiles, cruise missiles, a variety

of bombs, high energy weapons, infrared and radar sensors, satellites, command and

control structures, sensors and communications jammers, communications networks and

devices, and fire support in a dynamic environment.

As a result of the invasion of Kuwait, the Center for Studies and Analysis began

adapting C3ISIM as an air planning support tool. A suite of powerful workstations was

deployed to Riyadh along with a team of trained analysts. Populating the databases of

C3ISIM was essential to successfully modeling the overall air campaign and its subsets.

A key to the success of the effort, however, was that it was co-located with, and received

extensive support from, joint military operators who were in the process of developing

the actual Air Tasking Order (ATO). Despite the fact that these workstations were not

connected to a wide area network (WAN) and were unable to take advantage of

metacomputing or data mining, C3ISIM proved to be highly valuable in assessing

potential sortie attrition, allowing planners to modify strike packages and compare results

without risking lives and materiel.

Because this early version of the model was extremely resource intensive (three

hours of real time air operations required eight hours of simulation run-time), C3ISEVI

lost some of its usefulness as a timely mission planning tool following the

commencement of Desert Storm. The high pace of operations and the rapidly changing

3 While EADSIM is described by the program's designer, Teledyne Brown Engineering, as a "Monte

Carlo model", it is perhaps more accurate to describe it as a discrete-event-simulation model that employs

Monte Carlo methods to generate random variates. A detailed discussion of Monte Carlo and discrete-

event simulation is available elsewhere. [KELT91]

4

ATO caused analysts to turn their attention to "after-action" modeling. Post-mission

analysis still involved the modeling of air missions, but was limited to specific target

packages (vice the broad panorama of theater wide air operations).

EADSIM modeling methodology was improved as time passed both in-theater

and via remote technical support, but the real potential of this decision support tool was

perhaps never realized. How much more useful could this model have been with reduced

processing time (made possible by metacomputing), flexible resource scheduling

(through efficient distributed system management), and an adaptable model capable of

reconfiguring to meet quality of service requirements in a changing environment?

Advanced modeling and simulation (M&S) may integrate a mix of

computer simulations, actual warfighting systems, and weapon system

simulators. The entities may be distributed geographically and connected

through a high-speed network. Warriors at all levels will use M&S to

challenge their military skills at tactical, operational, or strategic levels of

war... [MSMP95]

In bringing the model to the Warfighter in a distributed, heterogeneous

environment, resource management tools (discussed in Chapter II) that can address

specific Quality of Service parameters are needed. These parameters might include a

network subscriber's bandwidth allocation, application access priority (assigned by

higher authority), preference for display of results (virtual reality, full motion video, high

resolution images, graphical representations, text only, etc), preference for granularity

and type of model chosen (stochastic, deterministic, time-stepped, event-driven), time

constraints (perishability of material, timeline of pending military action), and

subscriber's security access (assigned by proper authority and subject to authentication

and verification). Such parameters can then be used to allocate the resources necessary to

provide the requested Quality of Service or to offer the subscriber the opportunity to

select an adaptable application capable of reconfiguring to meet the subscriber's needs in

a changing environment.

Modeling and simulation have a role to play in each of the three elements of

command and control: the command function, the C4I process and the C4I systems. One

logical venue for such modeling would be the Global Command and Control System

(GCCS).

GCCS is the central C2 system for achieving information

superiority in the Joint Vision 2010. It is an integrated, reliable and secure

command and control system linking the National Command Authority

(NCA) to the Commander in Chiefs (CinC) of the major commands down
to the Joint Task Force (JTF) and Component Commanders. As the top

level infrastructure for automated support to C4I operations worldwide, it

is to provide a seamless battlespace awareness by exchanging data,

imagery, intelligence, status of forces, and planning information... GCCS
employs (sic) client/server architecture using commercial software and

hardware and open systems standards. Currently, GCCS integrates SUN,
HP, and PC products and operating systems with ORACLE and SyBase

distributed relational database support. [ANTH98]

In order to take advantage of the distributed resources and metacomputing

necessary to incorporate robust modeling applications into GCCS (or to make them

available by commercial WEB browser over a secure network), it is essential that models

be adaptable and capable of working in a distributed system. It is that adaptability that

will make the use of such models practical as a tactical decision aid for the Warfighter in

a distributed, heterogeneous computing environment.

B. SCOPE OF THIS THESIS

In order to support adaptive and adaptation aware applications (defined fully in

Chapter II, Section C) the Management System for Heterogeneous Networks (MSHN)

architecture includes a Client Library to intercept system calls and measure the resources

required to run an application4 . The Client Library is transparently linked with each

application to allow for the gathering and processing of useful data from system calls.

This process should be transparent to the user's application, should require minimal

overhead, and should be accomplished without the need for application source code. As

4 MSHN employs a method of intercepting an application's request for hardware before it reaches the

operating system by wrapping the application within a composite library, referred to as the MSHN wrapper.

The MSHN wrapper intercepts a system call, adds pre- and/or post-processing functionality for measuring

resource usage, and returns the value of the system call to the requesting application.

shall be discussed in Chapter II, the data collected from these wrappers are used by the

components of MSHN to establish resource requirements, resource status, and

optimization criteria; to make scheduling decisions; and to monitor application

performance in order to ensure adequate quality of service. A wrapper for this purpose

was designed and demonstrated in a precursor thesis [SCHN98] and was proven capable

of gathering an application's resource usage data without the need for that application's

source code and without adding excessive overhead.

The objective of this research was to wrap a robust, C4I modeling application,

representative of complex modeling applications currently in use by the Department of

Defense, in order to determine the resources required to execute the application on a

stand-alone workstation. Specifically, the goal was to determine resource usage required

to run the application using both Monte Carlo simulation and deterministic simulation.

The resources required would then be weighed against the confidence level of the

outcomes obtained. MSHN needs this type of information to determine which version of

an application to execute, in order to provide the best Quality of Service, while meeting

operational deadlines.

C. MAJOR CONTRIBUTIONS OF THIS THESIS

The need for robust C4I modeling and simulation in support of the tactical

commander, the "Warfighter," has been established in numerous Joint Warrior

Interoperability Demonstrations, Fleet Battle Experiments, and Joint and service specific

exercises (discussed in Chapter II B 2). However, to make the use of such models

practical in a heterogeneous computing environment, the resource management concepts

addressed by MSHN are needed. Key to the implementation of MSHN is the

requirement for adaptive and adaptation aware models that offer different versions of an

application to meet varying Quality of Service demands. Before scheduling algorithms

can be tuned to support such applications, more needs to be known about the actual

resource requirements of such models. This thesis provides the first such data gathered

on a complex, contemporary, C4I/air defense model currently in use throughout the DoD,

with conclusions drawn regarding the trade-offs of computing resources and confidence

in simulation outcomes. The data from this thesis will be used in follow-on research

intended to determine the distributions of these resources. Once the distributions have

been determined, resource data collected from EADSIM simulations will be used to

develop a MSHN application emulator (described in Chapter II).

D. ORGANIZATION

This thesis is organized as follows: Chapter II addresses the need for distributed

systems in order to take advantage of metacomputing in a heterogeneous computing

environment. It discusses three tools designed to support distributed systems, and the

role of MSHN in integrating such tools to support adaptive and adaptation aware

applications. Additionally, it discusses the most closely related work of which we are

aware: Armstrong's collection and analysis of large grained resource usage by

Numerical Aerodynamic Simulation (NAS) benchmarks [ARMS97, HENS99]. Chapter

III describes EADSIM's technical and operational architecture. Chapter IV explains the

concept of the MSHN wrapper, and the specifics of wrapping EADSIM run-time

executables. Chapter V provides an explanation of why EADSIM was selected to

represent an adaptive application. The EADSIM scenario used in the experiment is

described in detail, as is the measure of effectiveness chosen to weigh simulation

outcomes against resource requirements. Chapter VI provides a description of the

experiment including its methodology, the computing environment in which it was

conducted, the resource measurement data gathered from running EADSIM in both

Monte Carlo and deterministic configurations and analysis of the resulting outcomes

from those runs. Chapter VI also offers possible explanations of the overhead added by

the MSHN wrapper and an evaluation of the measure of effectiveness described in

Chapter V. The final chapter provides conclusions and suggestions for future research

and its application to C4I.

II. THE ROLE OF MSHN AND RELATED WORK

We should expect to participate in a broad range of deterrent, conflict

prevention, and peacetime activities. Further, our history, strategy, and

recent experience suggest that we will usually work in concert with our

friends and allies in almost all operations...Improvements in information

and systems integration technologies will also significantly impact future

military operations. ... [JOVI95]

This chapter places MSHN into perspective by describing related middleware

standards and projects and explaining why such middleware is needed in what has

become known as "network-centric warfare." Additionally, it describes the previous

research most closely related to this thesis, Armstrong's work [ARMS97] with NAS

benchmarks.

A. THE NEED FOR DISTRIBUTED SYSTEMS

While the geographic setting, venue, scope, and magnitude of future military

operations is uncertain, they will likely involve non-co-located Commanders-in-Chief

and/or Component Commanders, each facing unique work-space challenges, forced to

function in a heterogeneous computing environment with insufficient on-site computing

resources and constrained bandwidth. Such is the nature of warfare, low intensity

conflict, and operations other than war in the information age. It was, perhaps, this

environment that VADM Cebrowski [CEBR98] had in mind when he coined the term

"network-centric warfare." With limited on-site resources and geographically disparate

command and control elements, full advantage must be taken of collaborative planning

tools, common databases, and powerful off-site computing assets. This can only be

accomplished through the use of distributed systems.

A distributed system is a set of computers, connected by at least one network, that

do not share memory or a common clock. The goal of a distributed system is to cause a

set of computers to appear to the user as a single, powerful virtual machine. This is true

whether accomplished through the use of a distributed operating system (allocates fine-

grained resources of the virtual machine to application processes), a resource

management system (allocates single machines or groups of machines within the virtual

machine to application processes, but allows each machine to run its native operating

system), or a distributed computing environment (provides paradigm libraries or

programming language support to facilitate the sharing of available resources). There

are five primary advantages offered by distributed systems: resource sharing (hardware

and software can be shared among computers); enhanced performance (higher throughput

and speed through increased concurrency); improved reliability (through replication of

data files and services, distributed systems can be made more fault tolerant); improved

availability (some components may fail without affecting the overall performance of the

system); and modular expandability (hardware and software can be added without

adversely impacting existing resources). Due to the fact that network latency

(unbounded message passing time) and heterogeneous architectures make a global clock

and completely consistent shared memory infeasible, it is impractical for a distributed

system to have a coherent, total view of the global state. Therefore, synchronization and

consistency of state present challenges to any distributed system. This means that each of

the advantages cited above has accompanying pitfalls that must be carefully considered

when designing the distributed system and selecting global state algorithms to detect

stable properties (i.e., process termination, deadlock, garbage collection). The need for

consistent global states is no where more apparent than in dealing with discrete event

simulation models that incorporate both event-driven and time-stepped events. EADSIM

is such a model. [SING94]

B. THREE MIDDLEWARE STANDARDS AND PROJECTS FOR
DISTRIBUTED SYSTEMS

In the last few years, clusters of LAN5 - or WAN- connected systems have

become a reasonable and cost effective alternative to the use of expensive,

dedicated monolithic high-performance systems. The notion of a

metacomputer has been coined, denoting a 'network of heterogeneous,

computational resources linked by software in such a way that they can be

used as easily as a personal computer'. [BRUN97]

5 Local Area Network

10

MSHN researchers do not foresee the results of their resource management

system (RMS) research as a cumbersome piece of software requiring separate installation

and maintenance. Rather, the outcome of MSHN's research may be packaged as a

middleware-level standard. An RMS packaged in this way would eliminate the need for

separate installation and could be consolidated with the services that distributed

applications use most often. This section discusses middleware standards and projects of

interest to MSHN investigators.

Middleware is software that sits between applications and lower level

communication protocols and operating systems. The purpose of middleware is to

provide a variety of services (i.e., naming, security, load balancing, resource brokering,

and communication) to applications being executed in a distributed, and perhaps

heterogeneous, computing environment. Through the use of middleware, applications

written in different languages, executing via different operating systems, might access

common services and achieve interoperation.

The Object Management Group (OMG) is a consortium of more than 800

companies, whose goal is to specify a middleware architecture consisting of an object

request broker, common object services and vertical application domains. While it is not

OMG's intention that this architecture specification control the way in which middleware

technology is implemented, the consortium is interested in ensuring the interoperation of

implementations currently being developed. Common Object Request Broker

Architecture is the evolving middleware standard being nurtured by OMG. [DOLG99]

This section discusses CORBA and two other middleware tools, and how they

relate to MSHN's research.

1. CORBA

In an organization as vast and complex as the US military, it is unreasonable to

believe that computing environments in the future will be anything but heterogeneous.

Technological progress, the cumbersome DoD acquisition system (different for each

service), varying needs and working environments, a variety of networks and

11

accompanying protocols, and the unfeasibility/unwillingness to simply discard proven

legacy systems and architectures assure that any large internet/intranet must be built from

heterogeneous hardware, software and operating systems. While heterogeneity in itself is

not negative and may, in fact, be viewed as an asset to be leveraged, it does present

challenges to software developers and contractors desiring to take advantage of

heterogeneous networked systems. Heterogeneity creates the need for middleware that

can enable applications to share objects, functions and types without causing extensive

software re-work for developers, or complex work-arounds for users.

The Object Management Group (OMG) was formed in 1989 to develop, adopt,

and promote standards for the development and deployment of applications in distributed

heterogeneous environments. Since that time, the OMG has grown to be the largest

software consortium in the world, and has developed the Object Management

Architecture (OMA). The OMA consists of an Object Model and a Reference Model.

The Object Model defines how objects can be described, and the Reference Model deals

with interactions between those objects. In the Object Model clients issue requests for

services to objects (much like a remote procedure call (RPC)). The implementations of

these objects are hidden from the client. A key component of the Reference Model is the

Object Request Broker (ORB), which facilitates communication between clients and

objects (Figure 2. 1). Common Object Request Broker Architecture (CORBA) is the

specification developed by the OMG that details the interfaces and characteristics of the

ORB. In CORBA the terms "client" and "server" are roles that are filled on a case by

case basis. A client for one request might be server for another [VIN096].

In CORBA, an application consists of one or more objects that may reside on the same or

different platforms. An object provides service(s) that can be "requested" by a client

(Figure 2. 1). Clients obtain services from an object by making "requests" (RPC-style

requests, similar to a SEND operation, or by separate, deferred-synchronous,

SEND/RECEIVE operations) that consist of an operation, the name of the object that will

respond, zero or more parameters, and an optional request context. The object may or

may not return results to a client, and will return an exception if an abnormal condition

occurs. Code that is executed to perform a service is called a method. That is, a method

defines the implementation details of an operation. Object Adapters are the run-time

12

components of CORBA that sit between the ORB and the Object Implementations.

Object Implementations may be written in a variety of languages and may exist in a

variety of forms. With additional Object Adapters it is possible to support any style of

object implementation. An Implementation Repository is used by the Object Adapter to

provide run-time access to information about all currently available objects. [DUMA98]

Methods can be invoked statically or dynamically. In Static Invocation, a client's

request is made via interface definition language (IDL) "stubs" on the client side, and the

response is handled by IDL "skeletons" on the object side. The stubs and skeletons

interface with the CORBA ORB. In Static Invocation, the IDL Client Stub converts data

from the client's local data representation (type) to the Common Data Representation

(CDR), which is platform and language independent. On the object's platform, the

Object Skeleton executes the reverse operation. In Dynamic Invocation, requests are

made via Dynamic Invocation Interface (which allows the IDL stubs to be replaced by

separate SEND and RECEIVE operations). With Dynamic Invocation the developer is

afforded more flexibility. In Dynamic Invocation, the Dynamic Skeleton Interface (DSI)

may take the place of the Static Invocation Object Skeleton to accomplish data

conversion at run time.

Interface-specific

stubs and skeletons

There may be multiple

object adaptors

ORB-pnvate interface

Figure 2. 1 Common Object Request Broker Architecture. From Ref.[Vino96]

CORBA supports two types of (method) invocation semantics: synchronous

invocation and asynchronous invocation. Synchronous invocation is blocking. The

13

client will invoke the method and block until it receives a response from the server

(object implementation). With blocking primitives, the user buffer can be reused as soon

as control is returned to the user program (when the message has been sent or an

acknowledgement has been received). The RECEIVE primitive does not return control

to the object executing it until a message has been copied into the buffer provided by that

object. With synchronous primitives, a request (SEND) primitive is blocked until a

corresponding RECEIVE primitive is executed at the receiving computer.

Asynchronous invocation is non-blocking. The client will invoke a method,

continue its computation, and collect results as they arrive. With non-blocking

primitives, the SEND primitive returns control to the requesting program as soon as the

message is copied from the user buffer to the kernel buffer. The corresponding object

that executes the RECEIVE primitive signals its intention to receive a message, provides

a buffer into which the message will be copied and continues to execute. In CORBA the

client can also make "one way" requests, continuing to execute while the object processes

the request. [DUMA98], [SING94]

Through the IDL stubs, a client can use RPC-style semantics (synchronous), or by

using Dynamic Invocation Interface (DII) a client can use SEND/RECEIVE semantics.

Using DII allows a client to directly access the underlying request mechanisms provided

by the ORB. Applications use DII to dynamically issue requests to objects without

requiring IDL stubs to be linked in. The DII allows clients to make non-blocking

"deferred synchronous" (separate SEND and RECEIVE operations) and one way (SEND

only) calls. [SCHM99]

The Global Command and Control System-Leading Edge Services

(GCCS-LES) is a platform for the transfer of advanced applications from

the Research and Development community to the Defense Information

Services Agency's (DISA) GCCS service...The GCCS-LES is

converging the architectures in the Modeling and Simulation (M&S)
communities with Command, Control, Communications, Computer and

Intelligence (C4I) architectures. [TBMC97]

DISA recognized the importance of CORBA middleware in realizing the potential

of a heterogeneous, distributed system and incorporated it in the GCCS-LES. In fact,

CORBA is now part of the Defense Information Infrastructure Common Operating

14

Environment (DII COE) standard web browser, and is finding increasing use in DoD C4I

applications. The utility of CORBA lies in its ability to integrate diverse applications

across a variety of networks and network protocols. CORBA' s language independent

EDL's allow interfaces to be used from a variety of programming languages, including

COBOL, C, C++, Ada, Smalltalk, Perl and Java. CORBA-based applications are

independent of network protocols so they may be run in a distributed system over a

diverse network. These attributes ensure CORBA' s usefulness in a heterogeneous

command and control computing environment.

2. COMPASS

In 1994 the DoD Modeling and Simulation Office began sponsoring the US

Navy's Common Operational Modeling, Planning and Simulation Strategy (COMPASS)

Project based at SPAWAR Systems Center, San Diego.

The goals of the COMPASS project were to: prototype the use of a

common messaging environment to allow M&S services to better support

C4I process; demonstrate the operational benefits to joint Warfighters of

DCP tools to support M&S services for C4I/MP6 systems; (sic) facilitate

interoperability ofM&S with C4I systems. [COMP99]

COMPASS sought a means for geographically separated Commanders,

operational planners, and analysts to collaborate in a virtual environment as effortlessly

as they would if they were physically co-located (Figure 2. 2). In order to do this, they

would need distributed collaborative planning (DCP) tools that supported legacy systems.

These systems include modeling and simulation, C4I and mission planning systems that

were already in place. This collaboration would have to be accomplished in a distributed,

heterogeneous environment accessed by joint services and coalition partners. These

decision makers and mission planners would have access to a range of bandwidths,

possibly limited local computing resources, definite time constraints, and most

importantly the need to share a common image of the battlefield. The COMPASS

" Command, Control, Communications, Computers, and Intelligence/Mission Planning

15

project decided to pursue their goals through a combination of commercial off the shelf

(COTS) and government off the shelf (GOTS) collaborative services integrated by

middleware (Figure 2. 3).

COMPASS Operational Growth
Across SGI-UNIX-NT Operating Systems

Stimulate M&S with plans.
orders. Order of Battle,

environmental conditions, etc

Modeling

Chem. Bio. Rad &
other

Weapons Effects

Models

ieling and Simulation ~^?"v
Logical Networks ^^^

Virtual

SimulationsEnvironmental Constructive

Models Simulations

• Flexible, wide-area networking of heterogeneous planning systems
• Access simulations to evaluate key decisions or entire plan; explore "what-ifs"

•Use the same "virtual battlefield" to plan, simulate, replan, or train

Figure 2. 2 SPAWAR Presentation Slide of COMPASS. After Ref.[MCSW99]

I I 'ram Zptat*

I

r

o

OOTSJCOTS Cont«reiK«iaApp«

cm 3»«
j

unoKt: aujb itu owt

M ME Wgrr: MBOMJ lA&o WSietaafl CWt

Figure 2. 3 COMPASS Software Architecture. From Ref. [MCSW98]

16

COMPASS middleware is a peer to peer, client-server architecture that offers core

services to COMPASS-enabled systems accessing COMPASS servers through an

Application Program Interface (API). COTS core services include: Whiteboard (enables

sharing of graphics and images that can be cut and pasted, with tools for drawing and

typing); Chat (allows low bandwidth exchange of typed information between multiple

stations); Visual-Audio Teleconferencing/Video Interactive Conferencing (VAT/VIC)

(VAT provides for video/audio teleconferencing via existing C4I/M&S applications,

while VIC allows the sharing of video-based M&S products); and Collaborative Virtual

Workspace (CVW) (establishes a "virtual DCP Conference center" in which participants

can access collaborative planning sessions and COMPASS services through centralized

and well organized virtual venues). GOTS core services consist of Session Management

(provides the means to create, join or monitor collaborative sessions); Shared Overlay

Management (enables the sharing of a variety of geo-registered overlays); Composite

Mission Preview (allows planners to pre-view a complete, animated mission plan);

Simulated Mission Rehearsal (permits the viewing of Distributed Interactive Simulation

(DlS)-capable models and simulations); and Track Data Base Management Server (Track

Server) (tracks from GCCS can be shared and updated with COMPASS-capable and non-

GCCS COMPASS capable workstations). This suite of DCP services provides the

capability of integrating a variety of modeling and simulation, mission planning, and C4I

systems into a common view during the planning process by ensuring that users are

working with displays that show common tracks and are updated from a shared data base

manager with geo-registered overlays (routes, weapons effects, etc.). Through a session

management facility, the COMPASS architecture provides start-up, recovery (re-

establishment of system state following abnormal termination), and backup services.

There are currently twelve M&S systems (including EADSIM) and eight C4I/MP

systems that are considered COMPASS-enabled, having incorporated the middleware

code necessary to access COMPASS services (Figure 2. 4).

17

initulCapablity

Demonstrated

'V**-'
BWA—-

,
<~< i~V"

c a am '

"W ^>
*OCOM

J-.*- '. -M C

I I ProposedH !n-Progress

Development Completed

Fl!5t>3480

Figure 2.4 COMPASS Capable Modeling and Simulation and C4I Systems. After

Ref. [MCSW98]

Since 1995 COMPASS has participated in more than twenty Joint and Service

sponsored demonstrations and exercises, including four Joint Warrior Interoperability

Demonstrations (JWID 1995, 1996, 1997 and 1998) and two Fleet Battle Experiments

(FBE C, D). In each of these, COMPASS used metacomputing, reach-back and anchor

desk concepts to support the Warfighter with robust distributed collaborative planning (in

turn supported by modeling and simulation). Through these extensive operations

COMPASS has repeatedly demonstrated not only the usefulness of COMPASS services,

but the potential contribution of tactical modeling and simulation as an integral part of the

C4I process. COMPASS is now transitioning from an R&D program to an operational

implementation.

3. ENSEMBLE

The Ensemble system, developed at Cornell University, is a network architecture

designed to support network and application adaptation to changes in environment, users,

18

or application requirements. It is based on the use of protocol stacks to facilitate

enhanced communications between applications (groups and group members) by

supporting data replication, collaboration, or coordination. Ensemble is also capable of

controlling or managing a network application in a manner transparent to the application

developer. Elements of an application in a distributed environment include the users, the

components of the application, the network, and the communication infrastructure and

protocol. Adaptation can be achieved by reconfiguring any of these elements in response

to a change in environment or requirements (Figure 2. 5). This reconfiguration might

involve adding or deleting users from a group, changes in the communication

infrastructure (bandwidth, protocol, security, etc.), or changes in the application

(resources needed) itself. All of these responses to a changing environment require

careful monitoring, control, and synchronization of the system state. Ensemble

addresses this need through the use of a layered protocol architecture.

In Ensemble, micro-protocol modules are used to meet the communications needs

of an application. Sliding windows protocols, fragmentation and re-assembly, flow

control, encryption, group membership and message ordering may be stacked in a variety

of ways to address these needs. Each configuration of an application and environment is

served by a stack of these protocols. Assumptions are made each time a configuration is

initiated. These assumptions are then monitored by "detectors" (which can be micro-

protocols themselves) that sense changes in the environment (actually violations in the

assumptions of the currently monitored configuration) and provide the protocol stack

with enough information to form the basis of new assumptions in the event of a

reconfiguration. The determination of when to reconfigure is based on crossing a preset

threshold of violations for the given assumptions.

19

Layer C

txAdapt

I

Layer B

rv
Can't Adapt,

(Application

decides to

reconfigure)

Layer C

Can't Adapt

(notify next layer)

Layer B I
Environment Changes

Layer A Layer A

Figure 2. 5 When the Environment Changes, the Opportunity to Adapt is Passed

Up the Protocol Stack Until a Layer Adapts or the Application is Notified

(Requiring Reconfiguration). After Ref.[HAYD97]

In the Ensemble layered architecture, the lowest layer protocols attempt to adapt

to environmental changes first. If they are unable to do so, they notify the layer directly

above them. This continues until either one of the protocols on the stack is able to adapt,

or the application itself is notified. Once notified of the changed environment, the

application must decide whether, or how, to reconfigure (Figure 2. 5). A reconfiguration,

or "adaptation," might involve the application adjusting its Quality of Service demands,

dynamically modifying its interface with other applications, increasing or reducing its

security requirements, increasing or decreasing its bandwidth requirements, or possibly

even ceasing service to one or all application users. Each reconfiguration will result in a

new protocol stack to support it (each "instantiation" of a Protocol Stack has a unique

Protocol Stack Instance Identifier, PSI-ID).

Any reconfiguration in a distributed environment must address consistency of

state which in turn is likely to involve finalization, synchronization and initialization (or

start-up) of a new state. In Ensemble the mechanism that creates and installs a new stack

across a set of application users when a reconfiguration occurs is called a Protocol

System Protocol (PSP). The PSP, itself a stack of protocols within the application's

stack, handles the finalization of the micro-protocols in the old stack, creates a new stack

(assigning it a new PSI-ID), and starts the new protocol stack.

20

In order to reconfigure, the PSP selects the user with the lowest network address

as a kind of "reconfiguration coordinator." The chosen coordinator (the user that has

been selected) generates the new PSI-ID and broadcasts a finalize message to each user.

This message contains a description of the new stack, the list of users, and the new PSI-

ID. Each recipient builds the new stack of micro-protocols, registers the PSI-ID and

passes a finalize event to the top layer of the old stack. When each layer of the old stack

is ready to stop sending messages, the finalize event is passed down to the layer below.

When the finalize event has been processed by the bottom most micro-protocol, a

finalize—acknowledge message is returned to the coordinator. When the coordinator

collects all finalize—acknowledge messages, it broadcasts a start message to the new

stack. Each recipient in turn passes a start event to the bottom most layer of the new

stack, discarding the old stack. The start event is passed up the new stack and discarded

by the top layer. For fault tolerance, in the event a user is unreachable or there is a

network failure, the coordinator will broadcast a new finalize message (containing the list

of all users in the group). The coordinator awaits finalize messages from users of both

the old and new stack. If the coordinator fails, the user with the next lowest network

address broadcasts the finalize message. PSP will avoid deadlock; if necessary a user is

capable of installing a stack with a single element and resuming operation. A MERGE

micro-protocol may be used to locate concurrent PSI's for the same application, and to

merge them. [HAYD97]

An increased dependence on resource sharing has created the need for more

reliable means of managing and controlling applications in a dynamic, distributed

environment. Ensemble addresses this need by providing layers of micro-protocols that

pass events up and down a stack, responding only to messages of interest to their own

layer (Figure 2. 6). A system of checks and balances is used wherein assumptions are

determined when the stack is formed, and violation detection monitors watch for changes

in the environment that could signal the need for reconfiguration (adaptation).

Synchronization, finalization and consistent state reconfiguration are ensured (by

implementing the Process System Protocol). The Ensemble system is one approach to

making adaptive applications in a distributed system a reality. The potential exists for a

system like Ensemble to incorporate middleware like CORBA or COMPASS and offer

21

protocols that would enable adaptive modeling and simulation applications to span the

most diverse, heterogeneous C4I network.

r

Micro-

Protocols <

V

Top Layer

T
•H.

-\—:.

Q.
Q.
<

Network

Figure 2. 6 The Ensemble Architecture. After Ref.[HAYD97]

C. THE ROLE OF MSHN

Network intensive computing places unusual stress on conventional

computer system management and operation practice... Because

significant remote computing and storage resources may be necessary,

standardized services for resource allocation and usage accounting are

important. Other important issues are enforcing the proper use of network

resources, determining the scale and quality of service available, and

establishing priorities among the users and uses. Mechanisms are needed

to address these issues automatically and dynamically. [NSTB96]

The Defense Advanced Research Projects Agency (DARPA)-sponsored

Management System for Heterogeneous Networks (MSHN) project is a sub-component

of the DARPA QUORUM program. The goal of this project, as well as the program at

large, is to provide a resource management system (RMS) to enable both C4I applications

and planning applications (indeed, any adaptive application) to use multiple sets of

shared resources while accounting for dynamically changing priorities and environments.

This RMS must be capable of providing each subscriber process with its required Quality

of Service (which might include security considerations, deadlines, user priorities, and

preferences) in a heterogeneous computing environment in which many processes are

competing for shared resources. Rather than establishing this RMS as stand-alone

22

software, the MSHN architecture is designed as an integrated system, integrated with and

incorporating a variety of distributed system tools (i.e., CORBA, ENSEMBLE,

COMPASS, etc) to reap the maximum benefits from available resources.

In a military environment such an integrated system might mean offering the

Commander the opportunity to select the most appropriate application, or version of an

application, capable of executing within a specified time, at the proper security level, in

order to deliver the best achievable answer within his stated time constraints.

Specifically, applying this technology to robust C4I modeling and simulation applications

would enable on-scene Commanders to simulate complex elements of the decision

process in order to optimize the use of forces and materiel. The key to this

implementation however, is the development of adaptive and adaptation-aware models

and decision support applications that can be scaled to fit user-defined Quality of Service

(QoS) parameters.

We recall that an RMS allows the user to view a set of computers as a single

powerful virtual machine and does not provide micro-management of resources. Rather,

as stated earlier, an RMS allocates single machines or groups of machines within the

virtual machine to application processes, allowing each machine to run its native

operating system. MSHN acknowledges that in a heterogeneous computing environment

such as exists in the DoD, there will be little chance of an overarching distributed

operating system controlling all resources such as network routing, protocols, and server

memory allocation. It is MSHN's goal to simultaneously support multiple processes,

each with a variety of QoS requirements while dynamically combining these

requirements into a consolidated optimization criterion, then using this criterion to

optimize the application of resources to these processes. In this way, MSHN will

provide support for adaptive and adaptation-aware applications.

MSHN's use of the terms "adaptive" application and "adaptation-aware"

application is best explained in terms of Quality of Service support. Adaptive

applications exist in different versions capable of producing like results (though possibly

offering varying degrees of Quality of Service). For instance, an adaptive application

might have one version that executes on Linux, while others execute on Solaris, Unix or

NT. MSHN would monitor the use of such adaptive applications and would be able to

23

terminate one version and start another version from the beginning if it perceived the

user's QoS requirements were not being met by the currently executing version. It is

clear from this example then, that adaptive applications must be idempotent to allow an

application to be started (in another version) without corrupting any resources (such as a

database). An adaptation-aware application is similar to an adaptive application except

that when terminated, it is not necessary to restart the new version from the beginning.

Information about a previous state taken from the older version (that is about to be

terminated) can be safely used in the newly started version. MSHN would thus monitor

an adaptation-aware application as well as resources available elsewhere in the

distributed system, and, upon finding resources to run a version of the application that

could provide better QoS to the user, start the preferred version from the current state of

the old version (then terminate the old version). Adaptation aware models could allow

the user to "upgrade" to improved quality of service when resources become available

without a costly loss of time or data. In a tactical environment, this means the transition

to improved QoS would be transparent to the decision-maker, with no ill effect on

mission planning or timing and potentially considerable positive effect.

1. MSHN Architecture

The primary elements of the MSHN architecture are the Client Library (CL), the

Resource Requirements Database (RRD), the Resource Status Server (RSS), the

Scheduling Advisor (SA), the MSHN Daemon (MD) and the MSHN Application

Emulator (AE). The gateway of this architecture is the Client Library (Figure 2.7).

24

Resource Status

Server

Resource Requirements

Database
| ^-

Figure 2. 7 MSHN's Conceptual Architecture. From Ref.[HENS99]

To avoid requiring a MSHN user to explicitly log into the MSHN RMS, it was necessary

to intercept all calls to system libraries that would initiate new processes and to divert

these calls to the MSHN CL. Upon receipt of a request to launch an application, the CL

checks to see whether the application is on a list of applications that need not be managed

by MSHN. If it is, then the request is passed to a local operating system for execution.

If, on the other hand, it is an application that does require MSHN management, the CL

invokes a scheduling request on the SA, sending along the QoS requirements defined by

the user. The SA then consults the RRD, to determine what resources are required based

on the user's QoS parameters. Afterwards, the SA polls the RSS to see what resources

are currently available, and, based on this information and the optimization criteria, the

SA decides where the process should execute and returns this choice of location to the

CL. Based on input from the SA the CL then requests the Daemon located on the

selected remote machine to execute the application (this will be accomplished through the

use of CORBA, though not directly via the CORBA ORB). After the application has

been launched, the CL is capable of responding to callbacks from the SA by requesting

Daemons on other remote machines to launch preferred versions of adaptive or

adaptation-aware applications. Daemons are also used to start the AE in order to

simulate the running of applications without the accompanying overhead (to produce

predictive statistics regarding resource requirements), or to monitor the status of

25

resources not being used by MSHN applications. Key to the implementation of this

architecture is the "wrapping" of user applications by the CL.

In order to provide MSHN services transparently to the user, the CL must

intercept, pre-process and, when required, divert system library calls from user

applications. This includes calls to exec, all socket calls, and calls to open, close,

read, and write. By pre- and post-processing these intercepted calls to the operating

system, the CL can determine the resources used by an application while it is running,

store this information in the RRD, update the RSS as a process continues to execute, and

call upon the SA to use current and historical data to determine where it is best to run the

application in order to support its QoS requirements. It is the wrapping of applications

that enables the CL to drive the functionality of all MSHN components. It is a goal of

MSHN that this wrapping will eventually be accomplished by means completely

transparent to the user. Although it is anticipated that this will be accomplished through

the use of CORBA middleware, MSHN has already proven the ability [SCHN98] to wrap

applications without requiring source code (object files however are still required). A

more detailed explanation of MSHN can be found elsewhere [HENS99].

D. RELATED WORK

MSHN evolved from a scheduling framework called SmartNet. The goal of the

SmartNet project was to improve performance by applying sophisticated scheduling

capabilities to a set of compute-intensive jobs, each of which may require multiple

processes, onto a set of heterogeneous computers. SmartNet predicted the expected run-

time of a job on a particular machine based upon the wall-clock time required by

previous executions of the job. The wall-clock time was partitioned according to

compute characteristics [KTDD99]. A scheduling module leveraged the heterogeneity of a

set of jobs and a set of computers to achieve enhanced performance. A detailed

description of SmartNet is available elsewhere [FREU98, KIDD96].

Although SmartNet was designed to be used in actual production, the project did

make significant research contributions. MSHN, on the other hand, is intended to be a

research system that expands upon SmartNet's research by considering the overhead that

26

job sharing resources have on mapping and scheduling algorithms, support of adaptive

applications, and the delivery of good QoS to different sets of simultaneous users

[HENS99]. While SmartNet focused on wall-clock time to determine estimated time to

compute, this thesis discusses the monitoring of a variety of resources that impact QoS.

The work most closely related to this thesis of which we are aware is that of MAJ

Bob Armstrong, a graduate of the Naval Postgraduate School, whose thesis investigated

the effects that different run-time distributions have on the performance of SmartNet.

Armstrong used NAS benchmarks to determine the types of run-time distributions that

might represent selected jobs on selected machines. Once these run-time distributions

were determined, their parameters could be reproduced by a SmartNet simulator that he

built. Experiments with benchmarks were run with the executable program, input and

output data residing on the executing machine, as well as with the executable and data

being obtained from a file server. When the executable and data were obtained from a

file server, experiments were run with both a heavily and lightly loaded server and

network. The executable programs used in these experiments, which involved sorting

algorithms, were run both using a single processor of a multiprocessor computer and

using multiple processors on the same machine. [ARMS97] The focus of these

experiments was on total wall-clock time. Finer grained data regarding cpu time, number

of bytes transferred via interprocess communication, number of page faults, and amount

of data held in local cache were not collected. As a follow-on to SmartNet and

Armstrong's work, MSHN investigators have recognized the need to collect finer grained

data, through the use of wrappers, in order to more closely estimate a variety of resource

usage distributions.

E. SUMMARY

Section A of this chapter discussed the advantages of, and challenges inherent in,

distributed systems. Section B described three middleware standards that are currently

being investigated for their potential integration into a resource management system.

Section C provided an overview of the MSHN project, and Section D discussed the

related work of Bob Armstrong and the SmartNet project.

27

28

III. EADSIM

This thesis presents the methodology and results of wrapping EADSIM as a

representative, contemporary military application. It is thought that more finely grained

data collected from a real application, in this case from wrapping EADSIM, will be far

more valuable than wall-clock data collected from benchmark programs. Resource usage

data, collected from EADSIM using the MSHN wrapper, will be used to determine

distributions for a variety of computing resources. This data can then be applied to

follow-on research using the MSHN emulator to investigate the performance of the

various scheduling algorithms.

Extended Air Defense Simulation (EADSIM), formerly known as the Command,

Control, Communications, and Intelligence Simulation (C3ISIM) and also as the Theater

Missile Defense (TMD)/C3ISEM, is a technology outgrowth of a computer-based

modeling program developed in the late 1980's. EADSIM is an analytic, Monte Carlo

modeling tool for joint and combined force air and missile warfare. It is useful for

scenarios ranging from few-on-few engagements to theater applications. It embodies a

workstation-hosted, system-level simulation used to assess the effectiveness of air and

surface launched missile defense systems against a spectrum of air and surface-launched

threats. A robust7 C4I infrastructure for both aggressor and defender forces can be

simulated, allowing planners to evaluate their own forces and enemy forces in either role.

EADSIM is managed by the Testbed Product Office, Space and Missile Defense Battle

Lab, US Army Space and Missile Defense Command as the executive agent for the

Ballistic Missile Defense Organization (BMDO). EADSIM, selected as a primary

simulation in the BMDO Tactical Missile Defense Cost and Operational Effectiveness

study, is the primary mission level model for the Air Force, and was chosen as the

primary single integrated operational plan (SIOP) analysis model for United States

Strategic Command (USSTRATCOM). EADSIM is used by over 370 agencies,

including all US services, DoD and other US government agencies, as well as by the

' Although in computer science "robust" is a software engineering term meaning that a program has been

carefully engineered and tested to ensure that it is bug-free, this thesis uses the term in a more military

sense. In this thesis, robust is used to mean a complex range of capabilities.

29

governments of the United Kingdom, the Netherlands, Israel, Australia, Republic of

Korea, Japan, Spain, and NATO alliance countries. [SMDC97]

A. OPERATIONAL ARCHITECTURE

EADSIM displays scenario generation, preview, and post-execution information

to the user through the use of a graphical user interface (GUI). Graphics provide full

color terrain data with overlayed scenario icons, three dimensional displays of scenario

playback from any location in the battlespace, previews of scenarios with flight paths,

cross sections through terrain, attacker-to-target pairings, sensor intervisibility displays,

overlayed text windows, and overlayed maps on terrain. The displays are easy to access

and convey important, user-selected information.

The GUI provides a series of pull-down menus as well as many point and click

windows to view specification and input data. Help screens are available as needed.

These screens give a short description of the specific input area, including appropriate

units and examples. All data can be added directly by highlighting a field using the

mouse. The GUI offers graphics for generating, modifying, playing back, and analyzing

scenarios. These graphics are capable of presenting simulation results in two

dimensional and three dimensional displays simultaneously, from anywhere in the

battlespace. They can also be used to produce tailored textual results of engagements,

launches, kills, communications, and detections. Additionally, EADSIM offers a bounds

checking feature that includes contextual and consistency checks.

EADSIM has the capability to interact (confederate) with other simulations using

the Distributed Interactive Simulation (DIS) protocol standards, and the Aggregate Level

Simulation Protocol (ALSP). It can be confederated with campaign level models such as

the Corps Battle Simulation and Vector-In-Commander (VIC), with high fidelity models,

and with virtual simulators.

B. SYSTEM ARCHITECTURE

EADSIM consists of three basic elements: simulation set-up; runtime models;

and post-simulation analysis (Figure 3. 1).

30

Simulation setup

Sctsiaho

Generation

Scenario

Execution

Map
Generation

EADSIM
Run-Time Models

C31/D«uicn

Process

C3I

» '

i

'

Dciea Prop

=> L FP J

Post-amuJauon Analysis

Window hasrd

Ptst Priicnsinc

Sttnv>> Pb«b4d

OfT-tinc

Analyst Took

Technical Processes

Figure 3. 1 The Three Elements of EADSIM. After Ref. [METH98]

A GUI executable provides the primary user interface for simulation set-up, post-

processing and analysis tools. The four run-time processes are: Command, Control,

Communications and Intelligence (C3I); Flight Processing (FP); Detection (Detect); and

Propagation (Prop)(Figure 3. 2). The C3I process is event driven and serves as the

simulation "driver," performing C2 decision processing, track processing, message

processing, and engagement and weapons modeling for all platforms in the scenario. The

other three run-time processes are time-stepped, receiving input events generated by the

C3I process. Flight Processing maintains and updates the movement of aircraft, ballistic

missiles, satellites, and surface platforms, providing "ground truth" to the other three

processes.

31

EADSIM
Run-Time Models

Pbt form Movement

C3I Process

("driver")

Propagation ('omniand and Control Detection

Process MSG/Track Processing Process

Communications

Connectivity Flight Processing

-Aircraft

-SSM

Ground Movement

Sensors. Jamming

-Satellite

Figure 3. 2 The Four Run-Time Processes of EADSIM. After Ref. [METH98]

The Detection process models each sensor specified within the scenario provided and

determines when detection of each participant by each sensor occurs. Propagation

models communications connectivity and propagation. Propagation can be used to

determine when message transfer occurs and the effects of information flow on the C4I

decision cycle. Since the Propagation process is potentially very compute and resource

intensive, scenarios may be run by the other three processes exclusively, ignoring the

Propagation process. To minimize run time and computing resources, many EADSIM

users choose not to include the Propagation process in their simulations. (Of note, the

scenario we used in the experiments described in Chapter IV was provided in the

EADSIM installation package and does not use the Propagation run-time process.)

Operations and platform types modeled include:

Air Defense (SAM, artillery, Command/Control);

Offensive Air Operations (CAS, SEAD, C2, TBM, Refueling, etc.);

Attack Operations (Surveillance, C2, Intel gathering, movement, etc.);

Multistage ballistic missiles, Air Breathers (aircraft, missiles, helicopters);

Sensors (Radar, IR, SIGINT, BvIINT, HUMINT, etc.);

Jammers;

Satellites;

Early Warning;

32

• Generic Noncombatants;

• Communications (Networks, devices, messages);

• Electronic Warfare (full scope of capabilities);

• Terrain (masking, communications propagation);

• Weaponry (air to air, surface to air, air to surface, surface to surface); and

• Geographic Areas of Interest (MEZ, FEZ, AOR, etc).

C. TECHNICAL ARCHITECTURE

The execution of a scenario is performed by the four run-time models running in a

multi-process configuration. Each process models some aspect of the scenario and

exchanges data via interprocess communication during the scenario execution.

Interprocess communication between the run-time processes is accomplished using

sockets (Figure 3. 3).

EADSIM
Run-Time Models

Periodic Connectivity Periodic Detections

Propagation

Process

Detection

Process

Ground T

Flight Processing

-Aircraft

-SSM

-Ground Movement

-Satellite

>und Truth

Figure 3. 3 EADSIM Interprocess Communication via Sockets. After Ref.

[METH98J

Sockets are analogous to files and their use is analogous to file input and output

(I/O) operations. When sockets are opened (using the system function call socket())

they are named and associated with other sockets, thereby creating socket descriptors

similar to file descriptors. Just as read () and write () operations are commonly

used to modify and update files, read() and write () operations (perhaps more

33

aptly described as "send and receive" operations) allow data to be transferred between

sockets. Following a close() operation, both file and socket descriptors are released

back to the system. While files may be saved to memory and accessed later by a unique

name, this is not the case with sockets. Socket names do not persist in memory following

a close() operation. After performing a close () therefore, an application must

again open a socket(s) if it subsequently needs to transfer data. Simply put, the purpose of

sockets is to allow two or more processes on a single computer, or on computers

connected via a network, to communicate with each other. [QUIN96]

By using sockets for interprocess communication, EADSIM's run-time processes

can run on multiple computers. EADSIM's sockets are blocking, that is they are

established so a process will wait at the "read" operation until all data are received. This

blocking mechanism allows for the proper sequencing of the processes. The timing and

sequencing of the run-time processes are crucial to the ability of these processes to

execute correctly. EADSIM primarily supports Monte Carlo simulation, but can also

support deterministic analysis.

Although EADSIM is written in C, its coding is object-oriented-like. The object

oriented nature of the code has made revisions and improvements more straightforward.

Future versions of EADSIM are planned to integrate the functionality of the four run-

time processes into one executable, simplifying the code and improving the application's

performance on a single machine.

EADSIM executes on either Silicon Graphics Workstations with Silicon Graphics

operating systems 5.3 through 6.3 or on Sun Workstations (SPARC Station 10, 20, or

ultra series) with Solaris 2.3, 2.4, 2.5, or 2.6 operating systems. It requires 1GB Disk

Space, 192 MB RAM, a CD ROM, a 4mm tape drive, and dbx (a debug utility used to

trace the execution of a process).

1. Scenario Generation

Scenario generation in EADSIM is a complex iterative process in which laydown

files are constructed from groupings of platforms (Figure 3. 4). Platforms are players in a

34

scenario that reflect the attributes of prototype players. These prototype players, or

system elements,

Scenarios are built

from lower level data

Systems are deployed in

Laydowns (Platforms are

"Players*')

Scenarios

Elements

combine to

make System

Elements

("prototype

players")

Individual

Components are

specified as

Elements

PK tables

Flyoul

'ablcs

PP tables

Formations

Maneuvers

Jammers
Comms

EMP

Airframes

Radar Sig

JRSig .

Figure 3. 4 Hierarchy of Data Builds an EADSIM Scenario. After Ref. [TELE98]

represent aggregates of elements (low-level component definitions). Element types

include sensors (coverage and capabilities), airframes (flight dynamics), jammers (power,

frequency, bandwidth, coverage), weapons (performance and effectiveness), fly-out

tables (flight characteristics of interceptors), radar cross sections, infrared signatures,

probability of kill (geometry and target dependent kill probability), power propagation

tables (for directed energy weapon propagation), flight formations and relationships

(command chain), icons for display, communication devices (power, frequency,

bandwidth, coverage), protocols (message size, priority, and maximum life), rulesets

(platform behavior), and classes (groupings of types of targets for identification).

Complete details of the construction of scenarios are contained in the EADSIM v7.00

Methodology Manual. [METH98]

35

D. SUMMARY

EADSIM supports the "four pillars" of Theater Missile Defense (TMD) by

modeling Active Defense, Passive Defense, Attack Operations, and Battle

Management/C3I (including engagement logic, Command and Control structure,

Communications networks, and protocols). By modeling Theater Ballistic Missile

Defense and Air Defense in a dynamic environment, EADSIM offers analysts and

training personnel enhanced insight into TMD architecture, battle management, system

employment for maximum effectiveness, force structure analysis, and mission planning.

[SMDC97]

The ability of EADSIM to serve as a timely decision support tool for the

Warfighter has been demonstrated (Chapter II, Section B, Subsection 2 discusses

EADSIM' s inclusion in the COMPASS architecture) in Joint and Service sponsored

exercises, Joint Warrior Interoperability Demonstrations, and Fleet Battle Experiments.

Use of the model to support ATO preparation and planning during Operation Desert

Shield/Desert Storm and its current use by more than 370 agencies worldwide attest to its

potential as a decision support tool in a distributed, C4I planning environment.

EADSIM is representative of modeling and simulation tools that can be made more

accessible and timely through an ability to adapt to dynamic environments. EADSEVI'

s

ability to run deterministic as well as stochastic simulations made it a logical choice for

measuring and comparing the computing resources needed to execute these two

"versions" of the program. Additionally, EADSIM offers the ability to create elements

with varying degrees of fidelity integrated with command and control chains consisting

of varying degrees of complexity.

36

IV. EXPERIENCES WRAPPING A C4I MODEL

This chapter describes experiences with wrapping a C4I-modeling application,

EADSIM. The reason for wrapping this application is two-fold: 1) to acquire resource

usage information from a non-trivial, military, command and control application, and 2)

as a proof of concept of the transparency of MSHN's wrappers. MSHN has developed a

method of intercepting an application's requests for hardware services via the operating

system in order to measure the computing resources required to execute the application

[SCHN98]. This method is called "wrapping" the application and enables MSHN to

measure computing resource usage without incurring significant overhead and without

requiring access to the application's source code. MSHN's wrappers can be linked with

application object code without requiring modifications to source, access to source, or

modifications to the operating system. Therefore, it is unlike DeSiDeRaTa [UTAR96],

Graze [MOOR95], and Pablo [REED96] which all require source modification. Unlike

these tools, MSHN's wrappers obtain both the application's resource requirements and

the current status of the resources by intercepting operating system calls.

Section A of this chapter provides a high level explanation of how MSHN wraps

operating system calls. Section B discusses the methodology of wrapping the C4I-model,

EADSIM, including steps taken to correct minor problems when encountered.

A. INTERCEPTING SYSTEM CALLS WITH "WRAPPERS"

Operating systems serve two primary purposes: to fairly allocate hardware

resources that must be shared among applications and, to "beautify" the hardware by

providing the user a higher level interface with which to access the computer's hardware

resources. The interface between the user and the hardware takes the form of system

calls. When an application needs a hardware resource (i.e., disk space or the network) a

call is made to a user level library. This user level library, which is linked with the

application, requests the hardware on the application's behalf by invoking a system call

from the operating system. All UNDC applications, for instance link, with the C library,

which then makes the system calls on their behalf.

37

Based on research done for the SmartNet project, MSHN investigators determined

that to more intelligently manage resources in a distributed system, fine grained resource

usage data would have to be automatically collected and analyzed by the resource

management system (RMS). Specifically, MSHN's Client Library is responsible for

collecting and distributing this data within MSHN. A method was needed that could

gather data without incurring excessive overhead. That is, the method must not tax the

very resources it was monitoring.

In his thesis [SCHN98], Matthew Schnaidt described in detail the method he used

to intercept system calls, which was derived from a mechanism used by CONDOR

[LIVN95], thereby providing a means to measure resource usage through classes within

the Client Library [SCHN98]. This method involves "wrapping" an application within a

composite library (that includes a modified C library), thereby allowing requests for

hardware to be intercepted before they reach the operating system. Similarly, values that

are returned by the operating system call can be analyzed by this modified library. The

library of functions that perform this service, by linking with an application to be

monitored, are referred to as an application "wrapper." An initial determination of

which system calls to intercept in order to collect fine enough grained data for the

resource management system to perform optimally was also addressed in Schnaidt'

s

thesis. Experience with SmartNet demonstrated that the estimated time to compute

(ETC), based on measuring wall-clock time, was insufficient to accurately predict an

application's resource requirements, and hence its total run-time when executed in a

different environment. To better understand the effect various resources have on the

execution of a process, MSHN investigators identified key resources to monitor and the

metrics associated with them (Table 1).

It was initially determined that the major resources to monitor include the total

time an application controls the cpu (cpu time), the total main memory and cache

memory used (measured in pages), local and remote disk access (measured in number of

bytes), terminal I/O (measured in bytes and time spent blocked awaiting user input),

interprocess communication and other network traffic (both measured in bytes

transferred). In order to gather resource usage data on these resources, several system

calls need to be intercepted by the Client Library wrapper. The system calls that need to

38

be intercepted by MSHN's wrapper functions include socket (), connect (),

open (), close () , pipe () , read (), write (), and exit ().

Additionally, in order to wrap an application's start-up a modified MAIN() function

was written. A detailed description of how the wrapper was written and implemented is

beyond the scope of this thesis, but is provided elsewhere [SCHN98].

Resource Metric

Total Run-time Time

CPU Time

Memory Maximum memory used

Cache Memory Maximum cache used

Local disk Bytes read

Number of reads

Bytes written

Number of writes

Network disk Bytes read

Number of reads

Bytes written

Number of writes

Network Bytes read

Number of reads

Bytes written

Number of writes

Local interprocess

communication

Bytes read

Number of reads

Bytes written

Number of writes

Keyboard input Number of bytes

Time blocked waiting for user

input

Power Consumption Watts

Table 1: Resources to Monitor. From Ref. [SCHN98]

B. WRAPPING EADSIM

The process of wrapping an application begins with identifying which system

calls are to be wrapped. A copy of the C library functions corresponding to these system

39

calls then needs to be modified (in the case of MSHN wrappers, the names of system call

functions contained in the C library are simply converted to upper case to distinguish

them from their wrapper function counterparts). Wrapper functions, by the same name as

the original system call function, must then be written for each system call to be wrapped.

These wrapper functions will invoke the original system call by using its modified (upper

case) name, and will perform additional resource monitoring and measurement

functionality as required. The wrapper functions are then linked with the modified C

library resulting in a composite client library. The C run-time object file containing the

function call main () is modified in a similar manner (with the name main () being

changed to MAIN ()). The MSHN Client Library and the modified C run-time object

file are then linked with the application's object file(s). The wrapping of the application

is then complete.

In order to wrap EADSIM as a proof of concept of MSHN's Client Library

wrapper functions, it was necessary to obtain the application's object code8
. Recall from

Chapter II that MSHN's wrappers were designed to be transparent to the user, that is to

be executed without requiring any modification to the user application's source code.

With the US Army's Strategic Missile Defense Command providing release authority,

Teledyne Brown Engineering (TBE) delivered the object and archive files (.o and .a

files) for EADSIM v7.00, as well as a makefile. Using the README files provided with

the MSHN Client Library source code, and the Tutorial on Wrapping System Calls

originally written by Matthew Schnaidt [SCHN98] and later modified for use with the

Solaris 2.5 operating system by MSHN staff member Shirley Kidd [SKID99], we

modified the README-FIRST file (APPENDIX A) and proceeded to wrap EADSIM by

following the steps noted in paragraph 3 therein.

We first created a modified C library, libMSHNC.a, and copied this into the

syscall_lib directory that contained the files of the MSHN Client Library. Ensuring that

the MSHNjypes.h file defined variables for the Solaris 2.5 operating system (SUN5), we

ran the libraryMakefile to compile the client library, which produced the

° Theoretically, it should be possible to wrap executables instead using the Executable Editing Library

(EEL) [LARU95] tool developed by the University of Wisconsin's Paradigm project. However, doing so is

the topic of another MSHN thesis.

40

MSHN_syscall_lib.o file. The MSHN_syscall_lib.o file was then copied into the

EADSIM directory for later linking with the EADSIM object files. At this point we were

unaware of modifications that would be required to the files MSHN_syscall_lib.cc,

MSHN_Monitor_RRD_CLASS.cc, and libraryMakefile in order for the client library to

successfully wrap EADSIM. To catch calls to main () , we next modified the C run-

time object file, crtl.o, and renamed it Mod_crtl.o. This file was also copied to the

EADSIM directory.

After modifying the original EADSIM makefile provided by TBE to reflect local

directory paths, we inserted code to link EADSIM' s object files with

MSHN_syscall_lib.o and included the "-###" command so that the C language

compiler, "cc", would show each component as it was invoked without actually

executing (operating in the verbose mode without producing executables for each

process). The output from this modified EADSIM makefile was used to produce

separate (c shell) csh scripts to compile and link each run-time process. These individual

EADSIM-process csh scripts were then modified by substituting the C run-time object

file (crtl.o) with the modfied C run-time object file (Mod_crtl.o). It was later realized

that to successfully link the EADSIM object files (recall that EADSIM is written in C)

with the MSHN_syscall_lib.o file (written in C++), the makefile used to produce

MSHN's syscall_lib.o object file would have to explicitly add a reference to the directory

containing the stdc++ library to the list of directories to be searched by the linker.

EADSIM v7.00 was installed, from the production CD, on a SUN SPARC 20, a

SUN Ultra One, and an SGI Indy workstation. The modified EADSIM-process csh

scripts produced executables that appeared to be successfully wrapped. The four run-

time processes provided with the installation CD (C3I, FP, Detect, and Prop) were then

replaced with the wrapped run-time executables. These executables were used to run the

Demo300 scenario provided in the EADSIM v7.00 installation package (use of the

Demo300 scenario is described in more detail in Chapter V). While the simulation

executed successfully, the wrapper did not initially produce output files as expected.

Troubleshooting and debugging were needed.

After extensive debugging of the MSHN client library source code and EADSIM

csh scripts, it was learned that the following modifications were needed: (i) we needed to

41

explicitly add the "libstdc++.a," the "libstdg++.a," the "libm.a," and the "libc.a" to the

library Makefile (APPENDIX B) used to produce MSHN's syscalMib.o object file so

that C++ language symbols used in the Client Library would be defined in the EADSIM

executables at compile time; (ii) DEBUG statements defined in

MSHN_Monitor_RRD_Class.cc, that had been added to the write(), _write(), and

write() functions after the program had undergone testing, were causing

segmentation errors and needed to be removed; and (iii) the correct invocation of the

Unix -ps (process status) command had to be incorporated into the getPsData ()

function of the MSHN_Monitor_RRD_Class.cc code (APPENDIX D). Once these

changes were made, csh run-scripts were developed to properly reset the random number

generator seed for each run of the Demo300 scenario (APPENDIX E), and another run-

script was written to transfer the data from each run (both simulation outcomes and

wrapper output) to a separate directory for later analysis (APPENDIX F and APPENDIX

G).

During the debugging process, it was immediately evident that functions deriving

from the C++ iostream library were not being recognized (nor were any of the

functions from the C++ strings class). The ostream class object cout, for

instance, did not output debug statements to the screen. The C language function,

print f (), however, did perform as expected. It was determined that the original files

in the MSHN Client Library, written in C and C++, had always been compiled (and

linked) with C++ language test programs, using a C++ compiler which automatically

linked the MSHN_syscall_lib.o object file with the libstdc++.a library. However, when

attempting to link the MSHN_syscall_lib.o object file with the EADSIM object files

(compiled using a C compiler), to produce an executable, the C++ libraries were not

being searched, and symbols being referenced in the MSHN_syscall_lib.o file remained

undefined. This was verified by running the print name list of an object file (run -f

)

utility on the EADSIM wrapped executables. The nm utility displays the symbol table of

each ELF object file that is specified by the input file argument and will report if no

symbolic information is available for a valid input [BERK91]. By running the nm -f

command on the EADSIM executables it was discovered that several C++ symbols were

undefined. Using the g++ compiler with the -v option (verbose mode) we compiled a toy

42

program and noted that the libstdc++.a library, the libg++.a, the libm.a, and the libc.a

libraries were referenced in the output. We then found the local path to these libraries

and explicitly referenced them, using the -L command, in libraryMakefile2 (APPENDIX

B). By recompiling the MSHN Client Library with this makefile, we produced a

MSHN_syscall_lib.o file that, when linked with the EADSIM object files, produced an

executable with statically defined C++ symbols. The wrapper then successfully printed

debugging statements to the screen and produced output files as expected.

Apparently, after the MSHN Client Library had been successfully tested by

Matthew Schnaidt[SCHN98], DEBUG statements were added to many of the functions in

the MSHN_Monitor_RRD_Class.cc file to assist anyone planning to implement the

Client Library in the future. It was found, however, that when DEBUG statements were

defined within the MSHN_Monitor_RRD_Class.cc, running the wrapped executables

caused a segmentation fault. This segmentation error was due to recursive calls to

write () when invoking cout within the write () , _write () , and write (

)

functions in the MSHN_syscall_lib.cc file. The following lines were removed from

these functions:

#ifdefMSHN_DEBUG

cout« "CAUGHT A _write()"« endl;

#endif

This solved the segmentation error problem and provided a lesson on attempting to

invoke a write () system call from within a write () function.

Once the changes were made to the Client Library makefile and to the

MSHN_syscall_lib.cc file, the wrapped executables produced output files containing

resource usage data. However, this data clearly was incorrect (identical output values

were being produced by two of the three functions). There was something in the

getPsData () function, in the MSHN_Monitor_RRD_Class.cc file, that was not

returning correct values. The problem was found to be in the invocation of the report

process status (ps) command. The ps command prints information about active

processes [BERK91]. The original MSHN_Monitor_RRD_Class.cc code invoked the ps

function using the group list (-g) option, which prints information about all processes in

43

a group list. The ps utility is used in the getPsData () function to determine virtual

memory in kilobytes used by each wrapped process (-vsz), the number of physical

pages in memory (-osz) for each wrapped process, and the number of pages of memory

present in the resident set (-rss) of each wrapped process. It was determined however,

that the -g option did not return data for each of the three executing processes. The -g

option was replaced with the process list (-p) option, which returns data only on

specified process ID numbers (pid) listed in the process list. With this modification made

to the getPsData () function in MSHN_Monitor_RRD_Class.cc, the MSHN Client

Library was re-compiled and the MSHN_syscall_lib.o file was relinked with the

EADSEVI object files. This produced the desired system usage data for each wrapped

process.

One additional change to the code was made before recompiling the MSHN

Client Library. The MSHN_syscall_lib.cc file originally written by Matthew Schnaidt

[SCHN98] was intended to monitor processes communicating via network interprocess

communication (IPC) as well as local interprocess communication. Because EADSIM's

run-time processes would be run on one workstation, it would not be necessary to

measure network latency and throughput by monitoring network IPC. To avoid adding

overhead needlessly (by checking each connect() and accept() system call to see

whether it was a local or network IPC), since all connect() and accept() system

calls made by the EADSIM run-time executables would be made via local IPC, code was

modified within the acceptWrapper() and connectWrapper () functions to

ensure that all interprocess communication would be interpreted as local IPC

(APPENDIX C). An alternate approach to reducing overhead is discussed in Matthew

Schnaidt' s thesis [SCHN98], in which he suggests that follow-on research might

incorporate Synthetix tools, to dynamically optimize the MSHN Client Libraries at run-

time. Synthetix tools are described in detail elsewhere [PUCA96A] [PUCA96B].

C. SUMMARY

Section A of this chapter discussed "wrapping," a method of intercepting system

calls in order to monitor resource usage. Section B described the steps taken to wrap

44

EADSIM's four run-time processes, C3I, FP, Detect, and Prop. Problems identified

through debugging were discussed, and solutions to these problems were explained.

45

46

V. PROVIDING GOOD QUALITY OF SERVICE WITH LIMITED
RESOURCES IN A C4I MODELING APPLICATION

Section A of this chapter discusses the reasons EADSIM is a logical candidate to

consider when determining whether good Quality of Service (QoS) can be provided when

resources are limited. Section B describes the air and missile warfare scenario used in

our experiments. Section C discusses the measures of effectiveness (MOE) chosen to

compare the outcomes from the deterministic simulation with the outcomes from the

Monte Carlo (stochastic) simulations.

A. WHY EADSIM?

Recall from Chapter II that MSHN's goal is to provide a resource management

system (RMS) to enable applications that contend for shared resources to obtain good

QoS while accounting for dynamically changing priorities and environments. Operating

in a heterogeneous computing environment in which many processes are competing for

shared resources, an RMS such as MSHN, must be capable of providing each subscriber

process with its required Quality of Service (which might include security considerations,

deadlines, user priorities, and preferences). The MSHN architecture is designed to be

integrated with, and to incorporate, a variety of distributed system tools (i.e., CORBA,

ENSEMBLE, COMPASS, etc) in order to take advantage of all available resources.

Applying this technology to C4I modeling and simulation applications would enable on-

scene Commanders to simulate complex elements of the decision process in order to

optimize the use of forces and materiel. In order for the RMS to offer this flexibility in

response to user defined Quality of Service parameters, modeling and decision support

applications must be adaptive. That is, they must exist in different versions capable of

producing like results (though possibly offering varying degrees of Quality of Service).

EADSIM is an air and missile warfare modeling and simulation application that

offers great flexibility in (i) the areas modeled, (ii) the capabilities of the platforms

simulated, and (iii) the method of simulation (deterministic or stochastic). When building

a scenario, each platform (i.e., aircraft, missiles, sensors) is modeled individually as is the

47

interaction among platforms. A robust range of characteristics is offered for each

platform, allowing the scenario developer(s) the opportunity to select the granularity they

need to model in order to produce a result with sufficient fidelity to suit their purpose.

Users may chose to simulate the Command and Control (C2) decision process and the

communications among platforms on a message-by-message basis, simulating message

traffic flow through command networks and the impact this flow has on the decision

process. Intelligence gathering is also modeled, as is the flow of intelligence

disseminated to the commanders making operational decisions. All of these capabilites

can be applied to both offensive and defensive operations, allowing analysts and planners

to evaluate strike and counterstrike scenarios textually, in 2-D playback and/or 3-D

playback. It was EADSIM's flexibility, and potential as an adaptive C4I application, that

made it a logical choice as a proof of concept for MSHN.

B. THE DEMO300 SCENARIO

Due to the complexity inherent in designing and building a realistic scenario that

would exercise many of EADSIM's capabilities, it was decided to use one of the

demonstration scenarios provided with the EADSIM v7.00 installation package for our

experiments. Discussions with Teledyne Brown Engineering representatives led to the

selection of the Demo300 scenario, due to its broad range of platforms modeled, its

plausible force layout and mission objectives, and the short duration (wall clock time) of

each simulation. The only drawback noted in choosing Demo300, was that the scenario

did not model communications propagation (did not use the "Prop" run-time process). It

was explained to us by the TBE engineers that EADSIM users frequently elect not to

execute the propagation process because of its considerable computing resource

requirements. Communications in Demo300 were then considered "perfect" with

network latency, contention, and congestion not being simulated.

Demo300 simulates a large offensive air strike with a leveraging strike of tactical

missiles. Air launched cruise missiles and lofted trajectory TBMs are targeted against

Command and Control (C2) nodes-for both SAMs and Defensive Counter Air (DCA),

and the Intelligence Center, while depressed trajectory TBMs are targeted against the Air

48

Base itself (Figure 5. 1). With SAM sites at least partially suppressed, offensive air-to-

air fighters can engage defensive counter air fighters and divert them from the offensive

ground attack aircraft that are to follow (Figure 5. 2). This leveraging strike is intended

to soften the defenders' ability to counter the bulk of the attack conducted by ground

attack aircraft. A stand-off jammer aircraft attempts to blind the defenders' sensors and

disrupt communications links.

^jiMvjcy

-*• ^aafiH

'9f^
J,'

JC HOSTILE
•a=c a. :

-MRS MR%, *%($*<

M&h;

Intel Center

C3»
-Top SAM
Cmdr

^
^ Area Def

SAM Cmdr

Air Control

Center
if

e^
-Ac-

Figure 5. 1 Offensive Missile Targets. After [EADS98]

To counter this attack, a number of actions will be taken, utilizing a panoply of

defensive and counter-offensive assets. Early warning and ground surveillance aircraft,

battlefield C2 sensors, a low-observable, reconnaissance fighter aircraft, and an

intelligence collection satellite will provide alerting information and target cueing for

counter-offensive operations (Figure 5. 3). SAM and DCA C2 nodes will prioritize and

check targets for engagement based on the available consolidated air picture, areas of

responsibility, capabilities of assigned assets, and perceived threat to the assets being

defended. SAM and DCA C2 nodes will perform deconfliction in the case of dual or

multiple engagements of a single ingressing missile or aircraft (Figure 5. 4). While the

49

air defense operations are ongoing, ground targets will be selected for counter-offensive

operations.

Aided by intelligence, reconnaissance and surveillance assets, the defending force

will target the attacking force's ground components that are supporting the attack. These

ground ^targets would include ballistic missile launchers, sites occupied by these

launchers, and the command chain controlling the launchers (Figure 5. 5). Hostile

Division headquarters would also be targeted. Defensive force assets used in this counter

offensive consist primarily of mobile rocket systems (MRS).

:>>•: - „ .. -**_ '

"" -"

J* * §ftr_: .•.*TPf?.:. Stand-off Jammer

GmdAtk
;

MOSTIJJ>AAFighterAcftV
'

• - „

ALCMTBomber J* Acft

TBMs (in flight)
Acft

4CraisbMsfc

iri^^t- . : -?:
- . _ - -4*

Figure 5. 2 Offensive Strike Aircraft and Tactical Missiles. After [EADS98]

50

J**
' ^£-

'« nr-. '
&** h

Sosx- r
4ri

e

Jt HDSTIUE
5a aCt.

****** SSteL rS&b G2 Sensor

-

JFWf

C^»j

^ C^^

c?*^':..: vC^';,,; ->W& G Acft

^ ^^(AWACS):-.- ^GndSurvAcft •

^ _;
-g^ ^. .v^-^.,-r.. :,

: -; ^4*;iJJlL^;l l

Figure 5. 3 Defensive C2 Sensors, Reconnaissance, Surveillance and Early Warning
Aircraft. After [EADS98]

51

&**

ty?A-
'

v>c

^^''"''
"'Wr

|?r"^'"
|^*j*'^

HOSTIIjp
JC HOSTILE
S3 aftr .

-

AirDef"
'"

%^«.
Crhdr~"* . -_

.MRS Top
'"Crricbx .

'Uasr'

Air Defense Cm dr.

Asset Def'SAMs

^4

-&*:

Figure 5. 4 Deconfliction is Coordinated Among the Defensive SAM and DCA
Commanders. After [EADS98]

52

LoftedTBM
Lricfirs

#t*

*S3S^cTJF

* **

Dep Traj TBM Lnchrs
'..* —_

i

mr?j MRS cjjto, mrs

MRS
c±*

-**

Clj

m ct^

Figure 5. 5 Counter Offensive Targets. After [EADS98]

C. CHOOSING A MEASURE OF EFFECTIVENESS

Section C of Chapter II and Section A of this chapter, have discussed the fact that

fundamental to MSHN's design as a resource management system is the capability of

providing each subscriber process with its desired Quality of Service (QoS). QoS

considerations commonly sited include security, deadlines, user priorities, and

preferences. To military commanders and planners, these QoS considerations represent

very real constraints that vary with the situation and may mean the difference between

success and failure, life and death.

MSHN investigators are currently developing a framework for a performance

measure that can be used for scheduling resources in a distributed heterogeneous

environment. Such a performance measure would need to assess the ability of the RMS

to simultaneously satisfy, to varying degrees, QoS requirements. QoS attributes

considered critical to analyzing and evaluating a system's performance are priorities,

versions (which represent a user's preferences), deadlines, and security. These attributes

53

are defined, and their role in developing an optimization criterion called the Flexible

Integrated System Capability (FISC) ratio is discussed in detail elsewhere [JONG99].

In a military environment, timeliness, security considerations, and priorities

dictated by the operational situation greatly influence the decision-making process.

While a commander or planner may have little control over these variables, it is rarely the

case that decisions are fails accomplis, offering no opportunity to apply heuristics to

alternative courses of action. Just as EADSJJVI is one tool intended to be used in the

evaluation of alternative courses of action, it is an example of an application that could

potentially be used in several variations, providing the user the opportunity to state a

"preference" for one version over another. As stated in Section A of Chapter n, the key

to implementing an RMS that can support QoS requirements in a distributed,

heterogeneous computing environment, is the availability of adaptive, or adaptation-

aware, applications. It is not the purpose of this thesis to examine the potential of

EADSEVI as an adaptive application. Several characteristics of EADSEvl allow the

application to provide the user with a variety of choices, in order to support the

constraints of the decision making environment.

Among the characteristics of EADSIM that may be manipulated to support

varying time and resource constraints are (i) the application's ability to display the

scenario playback in either 3-D or 2-D graphics or to simply provide simulation results

through a variety of tailorable, textual reports; (ii) the ability to input varying degrees of

fidelity for each platform's characteristics, thereby "scaling" the model's scope; (iii) the

ability to model communications propagation with varying degrees of fidelity, or to

simply model "perfect communications," avoiding the considerable computing resources

needed to execute the propagation run-time process; and finally, (iv) the ability to execute

the application as either a stochastic or a deterministic simulation.

A primary objective of this thesis was to wrap a complex C4I modeling

application in order to determine the resources required to execute the application on a

stand-alone workstation in two different configurations, or "versions," and to compare

the results obtained from each model configuration against the computing resources

required to run them. We therefore sought a reasonable measure of effectiveness with

which to compare different "versions" of EADISM.

54

In order to make our proof of concept as manageable as possible we chose to

wrap the four run-time processes (despite the fact our experiment did require the use of

one of these). As discussed in Section B of this chapter, we chose to use a demonstration

scenario provided with the EADSEVI V7.00 installation CD. The use of the Demo300

scenario, which modeled perfect communications propagation (and therefore did not use

the prop run-time executable), eliminated the possibility of comparing a version of the

simulation running the propagation executable with a version that did not. However,

even this "example" was quite complex, corresponding to more than 600 pages of

scenario platform laydowns.

One aspect of EADSEVI however, made it particularly attractive as an example of

a potentially adaptive application. That characteristic was the application's ability to

support both stochastic and deterministic simulation. The Monte Carlo method of

simulation is dependent upon the generation of random numbers and the use of

probability distributions to simulate real world situations that contain an element of

chance. Random number intervals, intended to represent possible outcomes for

probabilistic variables in the model, are selected from a random number table or are

generated by computer to simulate variable outcomes. The random nature of a stochastic

simulation infers that each independent run produces only an estimate of a model's true

characteristics for a given set of input parameters. Therefore, a significant number of

independent trials must be run in order to evaluate the probabilities of conditions being

modeled. On the other hand, a deterministic simulation model, strictly defined, does not

contain any probabilistic elements. The outcomes from a deterministic simulation model

will not vary from run to run. [KELT91, REND97]

EADSEVI is primarily intended to be run stochastically. That is, it is a discrete-

event simulation model that employs the Monte Carlo method to simulate the random

nature of events in a scenario. A series of such Monte Carlo runs would then be required

to adequately evaluate a given scenario. Depending on the complexity and scope of the

scenario being simulated, this might require a significant amount of time and computing

resources. However, EADSIM also offers the user the opportunity to run a scenario in a

deterministic simulation, called the Planner Mode.

55

EADSIM's Planner Mode is intended to allow the collection of data from a single

scenario execution, rather than averaging data over a series of Monte Carlo simulation

executions. With the Planner Mode, engaged platforms or ballistic missiles are not

allowed to be destroyed; rather, the software accumulates probability of kill (Pk) and

engagement geometry data against platforms as the scenario progresses. The C3I process

runs without any platforms being killed. A penetrator aircraft is allowed to proceed from

a designated beginning time, along its route, to a designated end time, accumulating

probability of kill data as a result of weapon engagements, all the way to the designated

target. [METH98]

Attrition information is computed and logged for a variety of conditions. This

data may be viewed using the Post Processing application, allowing planners to analyze

single shot, cumulative, and route probability of kill information for all engagements.

Single shot Pk is the Pk for a single shot against a target. Cumulative Pk is the aggregate

Pk from all (single) shots taken against a target. Route Pk differs from cumulative Pk in

that it includes the effects of weapon reliabilities as well as the attrition of the engaging

platform. Consequently, the route Pk is usually less than the cumulative Pk, since single

shot Pk will degrade as the attrition of the engaging platform increases. This data may be

quite useful in analyzing a strike route, a strike "package," or placement of defensive

counter-air assets.

Because no platform is destroyed, post-processing reports resulting from a run in

Planner Mode are not readily comparable to post-processing reports generated from

Monte Carlo simulations. This lack of similar reports was a challenge to the

development of an acceptable measure of effectiveness that can be used to compare the

results from the Planner Mode to the results from the Monte Carlo simulation.

It was in examining one possible use of EADSIM that a measure of effectiveness

suggested itself. If, it was reasoned, a commander or planner with severe time or

resource constraints, was interested in determining the probability that at least one

tactical missile (either an air launched cruise missile or a ballistic missile) would reach its

intended target, he might want to run the Planner Mode for a quick look, worst case (or

best case, depending on the user's view point) estimate. To compute this probability

from the Planner Mode (which, it must be stressed, is not the intended use of the

56

application), we deliberately ignored the model's algorithms for determining the effects

of engagement dependencies, and assumed all probabilities of kill against missiles were

independent events. We then used the product of all final missile route Pk's to determine

the probability that every missile was destroyed just before it hit its target. We subtracted

this value from 1 to determine the probability that at least one of the missiles was not

destroyed:

n

11 -mi
(fmai route Pk) = p(all missiles are destroyed)

i=]

p(at least one missile is not destroyed) = (1 - p(a\\ missiles are destroyed))

m = probability of kill for the i

th
tactical

n = number of missiles in the scenario

m = probability of kill for the i

th
tactical missile (cruise missile or TBM)

This probability could then be compared with the observed outcomes from the Monte

Carlo simulation. The MSHN wrappers would measure the difference in computing

resources required to run a single Planner Mode simulation and a Monte Carlo simulation

(consisting of a statistically significant number of runs).

D. SUMMARY

This chapter discussed the selection of EADSIM as a potential C4I adaptive

application. The scenario chosen for experimentation was TBE's Demo300

demonstration scenario, which simulates an air strike on a defender's air base with a

leveraging strike from tactical missiles. The scenario was described in section B of this

chapter. While EADSIM offers the user a variety of scenario generation, execution and

post-processing options, it was important to find a measure of effectiveness with which to

compare two versions of the application. The ability of EADSIM to run either stochastic,

Monte Carlo method simulations or a deterministic simulation provided an opportunity to

choose the probability that at least one missile from the aggressing force strikes its target

as the measure of effectiveness.

57

58

VI. A DESCRIPTION OF THE EXPERIMENT

This chapter describes the experiment designed to compare the resources required

to execute EADSIM running both stochastic and deterministic simulations, to compare

the results obtained from these two configurations of EADSIM, and to determine the

overhead incurred by the MSHN wrapper. Section A of this chapter describes the

computing environment in which the experiment was conducted. Section B discusses the

experiment's methodology, explaining how and why each of the three experimental runs

was conducted. Section C presents the resource usage data and results obtained from the

stochastic simulation, and Section D offers the resource usage data and results from the

deterministic simulation. Section E provides the data used to determine the overhead

incurred by the MSHN wrapper.

A. HARDWARE AND OPERATING SYSTEMS

1. EADSIM Hardware and Operating System Requirements

EADSIM can either be run on either an SGI or SUN workstation with the

minimum requirements noted in Figure 6. 1. It was found that EADSIM would execute

with less RAM,

59

SGI SUN

Machine Model: Indy Machine Model: Ultra-1, with Creator 3-

D Graphics Card

RAM: 256MB RAM: 256MB

Hard Drive: 1 GB Hard Drive: 1GB

Graphics: 24 bit planes, double Graphics: 24 bit planes, double

buffering buffering

OpenGL: Version 1.1 OpenGL: Version 1.1

Operating System: 6.x Operating System: Solaris 2.5.1 (or higher)

Window System: Common Desktop

Environment (CDE)* or OpenWindows

*recommended

Figure 6. 1 EADSIM Minimum Hardware and Software Requirements as Stated in

EADSIM User's Guide.

but that the C3ISIM GUI executable was not supportable on SUN workstations without

the Creator 3-D graphics card.

2. Equipment Used in Experiment

EADSIM Version 7.00 was installed on a Silicon Graphics, Inc. (SGI) IRLX64

server from the CD provided by the U.S. Army Space and Missile Defense Command.

All executables and data files, including the demonstration scenarios, were then mounted

on an SGI IRIX workstation, a SUN SPARC-20 workstation/server, and a SUN Ultra-1

workstation (Table 2) . Both SGI machines ran the SGI 6.2 operating system, while both

SUN workstations ran the Solaris 2.5.1 operating system. These machines were

connected by a 10 Megabit per second (Mb/s) Ethernet LAN. The SGI IRIX 64 file

server runs SUN's network file service (NFS). Neither the SUN Ultra-1 nor the SUN

SPARC-20 workstation were equipped with a Creator 3-D graphics card, which required

all pre-and post-processing of the model to be controlled from the command line, vice

EADSIM 's GUI executable, C3ISIM. The SUN Ultra-1 was upgraded to include 256

MB of RAM, while the SUN SPARC-20 workstation had only 98 MB of RAM.

60

It was possible to execute the EADSIM run-time processes on both the SUN

workstations. Therefore, although EADSIM would execute the simulations on the SUN

workstations and output log files and the "stathdr" file needed for post-processing the

results of the run, this post-processing of reports could not easily be accomplished on the

SUN workstations and, without the 3-D Creator graphics card, there was no means to

display the scenario playback graphics on the SUN workstations. The EADSIM GUI

was, however, accessible on the SGI workstation (despite the fact that this workstation

was equipped with only 32 MB of RAM). By setting the environment path on the SUN

workstations to access the scenario data files needed to run the simulation, and setting the

resource path on the SGI workstation to access the log files and stathdr file produced by

the executables, we were able to run the simulations on the SUN workstations and do

post-processing and display the scenario playback graphics on the SGI workstation.

SGI Server SGI Workstation SUN Workstation SUN Workstation

Type Machine SGI Challenge L

Series

SGI Indy SUN Sparc-20 SUN Ultra-

1

Processor Speed 200 MHZ 100 MHZ 50 MHZ 167 MHZ

Processor Type MIPS R4400 MIPS R4000 TIJMS390Z50 SUNW,

ULTRASPARC

Number of

Processors

4 1 1 1

Amount of

Memory

192 Mbytes 32 Mbytes 98 Mbytes 256 Mbytes

Table 2: Configuration of SGI and SUN Workstations Used in Experiment.

B. EXPERIMENT METHODOLOGY

Because the population distributions of EADSIM' s resource usage were not

known, it was necessary to estimate the mean and standard deviation of resource usage

data collected by the MSHN wrapper. It was also necessary to estimate the mean and

61

standard deviation of the cumulative CPU times collected by EADSEVI's process

statistics pstat facility9 as well as the simulation trial outcomes themselves. The

central limit theorem provides a justification for estimating a population mean based on

the mean of a large sample of independent observations. The central limit theorem states

that the" sum of a large number of independent observations from any distribution tends to

have a normal distribution [JAIN91]. Using a large sample space (thirty trials), we

estimated the population mean of each resource parameter measured, by obtaining the

sample mean, standardizing it and using a standard normal table to obtain a confidence

interval for the mean. This process also made it possible to estimate the mean of the

simulations' results, so that a comparison could be made between the probability of at

least one missile reaching its target and the observed sample mean of at least one target

being hit.

The purpose of the experiment dictated the method in which it was conducted.

The goals of the experiment included the following: (i) use the MSHN wrapper to

measure requirements of a pre-determined set of resources (discussed in Chapter IV,

Section A) for each of the three EADSIM executables running the stochastic simulation

(employing Monte Carlo methods); (ii) use the MSHN wrapper to measure the computing

requirements of the same resources for each of the three EADSIM executables running

the deterministic simulation (Planner Mode); (iii) measure the overhead incurred by the

MSHN wrapper by using the EADSIM pstat facility to measure the cumulative CPU time

of both the wrapped and unwrapped executables running the deterministic simulation;

and (iv) use EADSIM' s post-processing report generation to compare results from the

stochastic simulation with results form the deterministic simulation. Each of these goals

suggested a specific method of gathering data.

An observation that was made early in the experiment design process, was that the

number of page faults and the related size of the resident set in memory were directly

9 EADSIM's pstat functionality, designed into each of the run-time process executables, makes periodic

system calls using the shell built-in function, times (prints accumulated process times for user and

system), while its process is executing. Cumulative CPU time (as well as accumulated data regarding wall

clock time and memory used by the process) is then output to a pstat file for each run-time process. Use

of the ps command in the MSHN wrapper to compute user CPU time and system CPU time is discussed

in Chapter IV, Section B.

62

correlated to wall clock time. It became clear that, in order to provide as controlled an

environment as possible in measuring resource usage, the number of page faults would

have to be standardized for each trial run. The only way to ensure this was to run each

trial on a dedicated workstation, and at a time when there would be as little competition

for memory as possible, thereby ensuring no page faults. Simulations were run

consecutively, after normal working hours, on the SUN Ultra- 1 workstation, and each

trial was checked to ensure the absence of page faults. In reality, it is anticipated that

EADSIM would be used by the warfighter in a "reach-back" situation. That is, the

commander or planner would be forward deployed in a possibly computer-resource-poor

environment, and would access EADSIM, located at a meta-computing center, via a

reach-back network. Without the use of an RMS like MSHN, it is unlikely that the

commander would know whether the server he was accessing was being shared by other

applications or what impact this would have on his expected run time. It is sufficient to

note, that wall clock time will increase if an application is required to swap more pages in

and out of memory during execution.

Using the Demo300 scenario, three runs of thirty trials each were conducted to

gather the data needed to meet the experiment's goals. The first run consisted of thirty

Monte Carlo simulation trials executed by the wrapped version of each of the three

EADSIM run-time processes (C3I, Detect, and FP). A run script (sh script) was written

that allowed the seed for the model's random number generator to be tied to the system

clock (APPENDIX E). Both the C3I process and the Detect process were given different

seeds for each trial (the FP process does not require a random number generator). Data

collected from these thirty Monte Carlo simulation trials included MSHN wrapper output

for each resource measured, cumulative CPU time as measured by EADSIM's pstat

facility, and post-processing reports that had been tailored to gather data on missile

success or failure. The second run consisted of thirty deterministic (Planner Mode)

simulation trials executed by the wrapped version of each of EADSIM's three run-time

processes. A separate run script similar to that used to launch the Monte Carlo simulation

was employed, with no seed applied. Data collected from these thirty deterministic

simulation trials included MSHN wrapper output for each parameter measured,

cumulative CPU time as measured by EADSIM's pstat facility, and a post-processing

63

report (the PAPA1 report) that provided accumulated Pk data for each missile launched.

Of note, only one such report was needed since simulation outcomes were deterministic.

The final run consisted of thirty deterministic (Planner Mode) simulation trials executed

by the unwrapped version of each of EADSIM's three run-time processes. Data collected

from these trials consisted only of cumulative CPU time as measured by EADSIM's pstat

facility.

The data collected from the experiment trials were gathered into separate

directories by another sh script, and copied into text files by PERL scripts written for this

purpose. These text files were then copied into a statistical analysis computer program

called Minitab which was used to produce descriptive statistics for each parameter

measured. Minitab then produced histograms (see APPENDICES H and I) from these

statistics and plotted these histograms against normal curves for graphical comparison.

As stated in Chapter I, Section C, follow on research will be conducted in an attempt to

determine distributions for each of the resource usage parameters monitored by the

MSHN wrapper [COOK99].

C. RESULTS FROM WRAPPED STOCHASTIC RUNS

As discussed in Section B above, after executing preliminary runs to ensure

required pages were cached in memory and no page faults were recorded, thirty Monte

Carlo simulation trials of the Demo300 scenario were run using the three wrapped,

EADSEVI executables (C3I, Detect, FP). Output from the wrapper, the pstat facility

and the post-processing reports was collected and stored in a dedicated directory. Data

was sorted and, when appropriate, copied into Minitab for further analysis.

1. Resource Measurements

Computing resource usage data, collected using the MSHN wrapper during the

thirty Monte Carlo simulation trials described in Section B, is summarized in Table 3.

Graphic representations of statistics produced from those values that demonstrate

variance during the Monte Carlo thirty trials are available in APPENDIX H. Values that

did not change from one trial to the next are highlighted and noted with an asterisk. In

64

the FP executable, only once in the thirty Monte Carlo trials did the number of pages in

the resident set vary (one trial had 7904 pages, vice the 7912 seen in the other Monte

Carlo runs). This value is both highlighted and marked with a double asterisk. Since

network reads (client machine seeking data from the network file server) were only

necessary for process initialization, it was to be expected that the number of bytes read

across the network, and the number of network reads, remained constant from one trial to

the next for each process. Likewise terminal I/O, which was limited to output to the

screen during the initialization process, did not vary from trial to trial. The number of

data bytes read and the number of reads done locally (Local File Data) did not vary by

process or from run to run (there were no local data writes recorded). This data was

probably read from the local proc/ directory (related to the pstat functionality of

each process). With the exception noted above, the number of pages in physical memory,

virtual memory and resident set did not change from trial to trial in the FP and Detect

processes, but did vary slightly from trial to trial in the C3I process (standard deviation

over the thirty trials was minimal, as can be seen in APPENDDC H).

65

Local IPC: Number of Bytes

Read

C3I Process FP Process

166758

Detect Process

3782 78411

Local IPC: Number of Reads 20845 47: 9801

Local IPC: Number of Bytes

Written

69328 2244479 .358588

Local IPC: Number of Writes 1077 59372 640<

Local File" Data: Number of

Bytes Read
2945

Local File Data: Number of

Reads

M6Q5Network (NFS): Number of

Bytes Read
o3

Network (NFS): Number of

Reads

124*:

Network (NFS): Number of

Bytes Written

1634463 1029378 2057529

Network (NFS): Number of

Writes

155957 741 589

Terminal I/O: Bytes Written

Terminal I/O: Number of Writes 12*

System CPU Time 3.03 3.20 5.86

User CPU Time 17.72 17.13 16.32

Cumulative CPU Time

(measured by EADSIM pstat)

20.73 20.31 22.15

Wall Clock Time 94.52
ES5"

77.17 93.36

Page Faults

Nmber of Physical Pages in

Memory
2953 1294*

Number of Pages in Virtual

Memory
23628

Number of Pages in Resident Set 17965 79i2£? 7752=!

* Outcomes did not change from trial to trial

** Outcome of only one trial differed from the other 29

Table 3: Mean Resource Usage, Over 30 Monte Carlo Trials, As Measured by

MSHN Wrapper.

2. Observed Simulation Outcomes

Using the C3ISIM GUI interface on the SGI Indy workstation, we were able to

tailor several post-processing reports to analyze the outputs from the stochastic runs of

the Demo300 scenario. Having selected the observed number of times that at least one

missile reached its target as our measure of effectiveness (Chapter V, Section C discusses

the measure of effectiveness in detail), we tailored an Action History report to produce

Red successes only (Figure 6.2). By simply counting the number of successes against

66

the missiles targets, as defined by the Demo300 scenario, we were able to determine the

observed percentage of at least one missile reaching its target over the thirty Monte Carlo

runs. Since there were seven occasions, in thirty trials, when at least one missile

successfully destroyed its target, the proportion observed was 0.23.

Engagement Statistics

Scenario: Demo300

Report Type: Action History

Begin Report Time:
End Report Time: 960

Actions:

Hit_Base
Success

Acting Against
Platforms: Platforms:

All Hostile All Friendly
All Missiles A 11 G round Units

All Air Units
A 11 M issiles

Acting Against
Time Platforms Action Platforms

239.00 TBM_Depr_Traj_02 Hit_Base BASE
246.42 Hostile_AA_Ftr_02/01 Suc'cess AA_Ftr_04/02
294.50 Hostile_AA_Ftr_01/04 Success AA_Ftr_05/02
301.02 Hostile_AA_Ftr_03/01 Success AA_Ftr_04/01

Total Number ofActions : 4

Figure 6. 2 Sample Red Action History Report Summarizing All Red Missile Hits

and Air-to-Air Combat Successes Against Blue Assets. After [EADS98]

D. RESULTS FROM WRAPPED DETERMINISTIC RUNS

1. Resource Measurements

Resource usage data collected by the MSHN wrapper during the thirty,

deterministic (Planner Mode) trials is summarized in Table 4. Since outcomes from a

deterministic model do not vary from run to run, the only resource usage data that

produced a non-constant distribution across the thirty trials were user CPU time, system

CPU time, and wall clock time. The resource usage values that did not vary from those

observed during the Monte Carlo trials are highlighted in Table 4.

As expected, since the Planner Mode allows each missile to reach its intended

target, and accumulates Pk data rather than allowing an engagement to result in a

67

platform being destroyed, each trial in the Planner Mode required more resources than

trials run with the stochastic model. There was substantially more CPU usage and wall

clock run-time in the Planner Mode, as well as more bytes written to disk, number of

writes to disk, number of bytes read and written via interprocess communication, and

number of IPC reads and writes. In the deterministic simulation (Planner Mode) only

wall clock time, and system and user CPU (cumulative) time varied from one run to

another. However, none of these increases would cause the expected run-time of a single

deterministic run to be equivalent to thirty Monte Carlo trials. Graphical representations

of statistics produced from these values that varied during the thirty deterministic trials is

available in APPENDIX I.

C3I Process FP Process

Local IPC: Number of Bytes

Read

223784 4600

Detect Process

111768

Local IPC: Number of Reads 27973 575 13971

Local IPC: Number of Bytes

Written

119840 3098268 2497276

Local IPC: Number of Writes 1347 81968 640*

Local File Data: Number of

Bytes Read

2945*

Local File Data: Number of

Reads

5* 5*

Network (NFS): Number of

Bytes Read
Z086J5J Z08605* WMM

Network (NFS):

Reads

Number of

Network (NFS): Number of

Bytes Written

2892142 1381809 2612821

Network (NFS): Number of

Writes

290730 753 645

Terminal I/O: Bytes Written 530* 307*-

Terminal I/O: Number of Writes 21* m
System CPU Time 5.07 4.36 .20

User CPU Time 54.36 20.54 27.12

Cumulative CPU Time

(measured by EADSIM pstat)

39.40 24.88 38.30

Wall Clock Time 141.02 124.50 140.81

Page Faults 0*

Number of Physical Pages in

Memory
2965 12942

Number of Pages in Virtual

Memory
23720 3SM flpaatt

Number of Pages in Resident Set 18040 7904 7752"

* Outcomes did not vary from those observed in Monte Carlo trials.

Table 4: Mean Resource Usage for 30 Deterministic Trials, as Measured by MSHN
Wrapper.

68

2. Computed Outcome Probabilities

As discussed in Section B of this chapter, EADSIM's post-processing GUI offers

a series of reports useful for analyzing scenarios run in the Planner Mode. These reports

are called "PAPA" reports, an important one of which is known as the PAPA1 report.

Although the PAPA1 report provides analysts with a variety of information regarding

hostile and friendly platforms, as discussed in Chapter V, Section C, we are most

interested in the route probability of kill (route Pk) for each tactical missile (TBM and

cruise) launched. We can obtain this data by scanning the PAPA1 report for the last

given route Pk for each missile. APPENDIX J provides a PAPA1 report, with final route

Pk's of each missile highlighted.

In Chapter V, Section C it was determined that our measure of effectiveness

would require us to determine the probability that at least one missile reached its target (it

is assumed in our experiment that if a missile is not destroyed, it will hit its intended

target), in order to compare this probability with the outcomes observed in the Monte

Carlo trials. Recall that the equation to determine whether at least one missile reached its

target was:

n

I! m (final route Pk) = />(all missiles are destroyed)

i=l

/?(at least one missile is not destroyed) = (1 - p(all missiles are destroyed))

m = probability of kill for the i

th
tactical missile (cruise missile or TBM)

n = number of missiles in the scenario

From this PAPA1 report, we find that there were a total of twenty-one TBMs and four

cruise missiles launched, for a total of twenty-five tactical missiles. Taking the product

of each missile's final route Pk (highlighted in APPENDIX J), we find that the

probability that all missiles were destroyed before hitting their target is 0.289.

Subtracting this number from one, we conclude that the probability that at least one

missile was not destroyed (and hence hit its target) is 0.71 1.

69

E. MEASURING THE OVERHEAD OF THE WRAPPERS

In order to determine the overhead incurred by the MSHN wrapper, we ran thirty

deterministic simulation trials of the Demo300 scenario using the three wrapped

executable processes (C3I, FP, and Detect) and thirty trials using unwrapped processes.

Using output from the pstat function discussed in Section B of this chapter, we found

the mean cumulative CPU time of each process for each set of thirty trials. By

comparing the mean cumulative CPU time gathered from the trials executed by the

wrapped processes with the cumulative mean gathered from the trials executed by the

unwrapped processes, we were able to determine the difference in average cumulative

time for each process (Table 5). Since all trials were deterministic and run on the same

workstation with the same file server, we attributed this difference to the overhead

incurred by the wrapper.

PSTAT DATA Cumulative CPU Cumulative CPU Difference

(in seconds) Time Wrapped Time Unwrapped

C3I Process 39.39 38.51 0.88

FP Process 24.88 24.73 0.15

Detect Process 38.30 29.21 9.09

Table 5: Mean Cumulative CPU Times Reported by PSTAT Function (Planner

Mode).

It is worth noting that the cumulative CPU times for the wrapped processes

produced by the pstat function called by EADSIM closely agree with the cumulative

CPU times measured by the MSHN wrapper. The mean cumulative CPU times (mean

user CPU + mean system CPU) for the thirty deterministic simulation trials executed by

the wrapped processes, as measured by the MSHN wrapper, are given in Table 6. In

each case, the mean cumulative CPU time derived from data gathered by the MSHN

wrapper was within approximately 1% of the mean cumulative CPU time derived from

the pstat reports. As is evident from Table 5, only the Detect process incurred

significant overhead (3 1%) from the MSHN wrapper. A graphical representation of the

statistics derived from the wrapped and unwrapped executables running the Demo300

70

scenario in deterministic simulation trials, as measured by the pstat functionality of

each process, is provided in APPENDIX K.

MSHN Wrapper Data (in seconds) Cumulative CPU Time

C3I Process 39.43

FP Process 24.90

Detect Process 38.32

Table 6: Mean Cumulative CPU Times Reported by MSHN Wrapper.

Since it was anticipated that the MSHN wrapper would add an insignificant

amount of overhead to each wrapped process, it was surprising that the wrapped version

of the Detect process demonstrated a nine second increase in cumulative CPU time over

the cumulative CPU time measured for the unwrapped version. To attempt to determine

the cause of this increase we took an algebraic approach that compared wrapper

invocation overhead for the deterministic simulation trials. We assumed that any

overhead added by the MSHN wrapper depended upon the actions taken by the wrapper

upon intercepting a system call. The first step of this evaluation was to determine which

wrapper calls did not vary from process to process, and which could not have contributed

to the overhead incurred by the wrapper. Referring to Table 4, we noted that local file

data and the number of page faults did not vary from process to process, and could

therefore be eliminated as a possible source for the increased overhead displayed by the

Detect process. Upon examining the code in APPENDIX C, we saw that the amount of

data (number of bytes) transferred after a system call has been intercepted does not

contribute to the overhead incurred by the wrapper. In other words, while the number of

read(), write(), open(), close(), connect(), and accept() operations was of

interest in evaluating the overhead accrued by the wrapper, the number of bytes

transferred during, or as a result of, each of those operations would not have contributed

to wrapper-generated overhead. By the same token, the number of pages in physical

memory would not have contributed to the overhead created by the wrapper, since the

wrapper simply gathers the data which is does by making a single, per process,

invocation of the ps facility (Chapter IV, Section B discusses use of the Unix ps

command, and code for the getPsData() function is available in APPENDIX D).

71

One final observation needs to be made before continuing our analysis. Terminal

I/O debug statements, which were inserted in the MSHN wrapper source code during the

debug process 10
, were left in the code throughout each of the three, thirty-trial runs.

When the experiment was completed, we removed the debug statements and executed the

Demo300 scenario using the wrapped executables running the deterministic (Planner

Mode) simulation. We found that all twelve of the terminal I/O writes for the Detect

process noted in Table 4 had been eliminated, as had five of the one hundred and eleven

terminal I/O writes performed by the C3I process and thirteen of the twenty-one terminal

I/O writes performed by the FP process. While this would explain part of the total

overhead incurred by the Detect process, since the FP process had more terminal I/O

attributed to the debug statements than did the Detect process, we concluded that the

debug statements can also be eliminated as a source of the added overhead observed in

the Detect process.

In comparing the values measured for each of the three processes, one value

stands out as being significantly different for the Detect process than for either the C3I

process or the FP process. The ratio of Detect' s system CPU time to its cumulative CPU

time is significantly greater than either of the other two processes' ratios of system CPU

time to cumulative CPU time. This was observed in both the deterministic simulation

trials and the stochastic simulation trials. Perhaps more interesting, however, is the fact

that although the Detect process required far less user CPU time than the C3I process to

execute the Demo300 scenario in the deterministic simulation, the Detect process

required more than twice as much system CPU time than did the C3I process (which was,

in turn, more system CPU time than was required by the FP process). This seemed to be

an excellent clue for evaluating why the MSHN wrapper incurred more overhead in the

Detect process than in the other two processes. Something within the Detect source code

was requiring that more time be spent in system calls than in the other two processes. We

decided to compare the quantity of each different type of system call that the wrapped

process made, in an attempt to determine which, if any, of Detect' s system calls were

significantly greater in number than in the other two wrapped processes.

10 #Ifdef MSHN DEBUG statements written into many of the MSHN client library functions were not

defined for use during this research. Debug statements were instead inserted into four functions only.

72

Again referring to Table 4, we concentrated our effort on the following values:

number of local IPC reads and writes; number of local file data reads; number of remote

file data read from and written to the network file server; and the number of terminal I/O

writes. As can be seen by scanning Table 4, in no case did the Detect processes' resource

usage measured for any of these values exceed the usage measured for each of the other

two processes (the number of reads and writes listed in the Detect Process column of

Table 4, is never the maximum value of a given row). In all but one case (the number of

IPC reads) both the C3I process and the FP process performed at least as many read and

write operations as the Detect process. And while the mean number of IPC reads is

greater for the Detect process than the FP process, this number is far less than the mean

of observed IPC reads for the C3I process.

Based on the fact that the Detect process did not perform the most read or write

system calls, of any given type (local IPC, local file data, remote file data, and terminal

I/O), we eliminated wrappers of read and write system calls as the cause of the significant

wrapper-induced overhead observed in the Detect process. However, as discussed above,

we know that the Detect process did require significantly more system CPU time than the

other two processes. To understand how this can be possible we reviewed the way in

which EADSIM models a scenario (EADSIM is described in detail in Chapters III and V

and the Demo300 scenario is described in Chapter V).

Through IPC, the C3I process tells the Detect process which platforms are of

interest. The Detect process, which has been initialized with sensor characteristic data

for each of the scenario's platforms, receives "ground truth" on the movement of these

platforms via IPC from the FP process. The Detect process uses this data to compute

sensor output, then periodically reports sensor information to the C3I process. While

EADSIM 's source code was not used in this analysis, it was verified by TBE engineers

that the Detect process awaits ground truth from the FP process, in order to make its

periodic report of detections to the C3I process. We believe that during each time-step

interval, the Detect process queries the FP process, in a loop, until ground truth data is

sent. This is known as "busy waiting." In this busy waiting situation, the Detect process

would use the CPU to check (in a loop) whether the FP process had data to transmit. The

MSHN wrapper does cause some overhead each time the Detect process checks the FP

73

socket for data. Even when no data is available in the socket, the wrapper calls

getclocktime() twice. To eliminate the possibility that the MSHN wrapper was

adding overhead by invoking the getclocktime() system call each time the Detect

process checked for data from the FP process while busy waiting, the call to

getclocktime() was commented out of the readWrapper() function in

MSHN_syscall_lib.cc. This change, however, resulted in no discernable reduction in

system, or cumulative, CPU time required to execute the Detect process.

The MSHN wrapper does not currently report very fine grained data regarding

system calls. In fact, no data is output regarding the number of open(), close(),

connect(), or accept() system calls. Therefore, having eliminated the data that the

MSHN wrapper output to file as providing sufficient information from which to deduce

the cause of the additional overhead incurred by the Detect process, we conclude that we

currently have too little data to determine what caused the MSHN wrapper of the Detect

process to incur more overhead than the wrappers of the other two processes. The

solution to this problem will be discussed in the Future Work section of the next chapter.

One last note regarding the data output to file by the MSHN wrapper. It is

apparent in Table 4 that the total number of IPC writes do not equal the total number of

IPC reads, nor do the total number of IPC bytes written equal the total number of IPC

bytes read. It is unclear, based on the data available from the MSHN wrapper, why this is

so. Work is currently underway to modify the MSHN wrappers so that finer grained data

will be collected and reported.

F. WEIGHING THE SIMULATION RESULTS USING OUR MEASURE OF
EFFECTIVENESS

As discussed in Chapter V, Section A, we have chosen EADSEvl as being

representative of a complex C4I modeling application that offers the warfighter a variety

in Quality of Service. Based on the operational situation, the commander or mission

planner, with the aid of an intelligent resource management system such as MSHN, can

select that version of EADSIM that best suits his or her needs. This decision will take

into consideration the time constraints, system security limitations, mission priority, and

computing resource availability (e.g., network bandwidth and anticipated congestion,

74

local memory and disk space, graphic display capabilities). Chapter V, Section C,

explains a measure of effectiveness that would allow us to weigh the results obtained

from running EADSIM in a deterministic simulation with the results obtained from

running EADSIM in a stochastic simulation. In other words, in a time constrained

situation, given that the deterministic simulation, though more resource intensive than the

stochastic simulation, need only be run once, can the results obtained from the

deterministic version of EADSIM be useful? Or must mission planning be delayed

sufficiently long to enable the Monte Carlo runs to be executed a large number of times?

Table 7 displays the computed probability (from the Planner Mode run) that at

least one missile would not be destroyed (and would hit its target) and the observed

percentage of time (from the Monte Carlo runs) that at least one missile hit its target.

What, if any, conclusions can be drawn from this data?

Using data from the PAPA1 report described in section D, subsection 2, and our

equation to determine the probability that at least one missile hits its target, the

commander who chose to run the deterministic simulation due to time constraints, would

have been told there was a 71% chance, one of his or her bases would be hit by a missile.

Had the same commander, with more time available to analyze the scenario, chosen to

run thirty stochastic trials, he or she would have observed one of his or her bases hit by a

missile in only 23 % of the runs. Although the deterministic simulation offers a

significant savings in time, there was quite a disparity between the probability of a

missile hit, and the observed proportion of times at least one missile hit its target.

/?(at least one missile hits its

target)

Deterministic Simulation .711

Stochastic Simulation .233

Proportion of trials when at

least one missile hit target

Table 7: Comparison of Predicted and Observed Outcomes.

To determine whether the observed disparity could simply be due to chance, or

the overall probability of a missile reaching its target in the stochastic trials was, if fact,

75

different than that for the deterministic trials, we next tested the hypothesis that the true

underlying probability of at least one missile hitting its target during the stochastic trials

was p = .71 1. Each run of the stochastic simulation can be considered a Bernoulli trial,

with the probability of at least one missile hitting its target equal to p , and the probability

of no missile hitting its target equal to 1-p. The number of success (trials in which at

least one missile hits its target) of n repeated independent Bernoulli trials (each with

probability p) follows a Binomial distribution with parameters (^ andp). In our case, the

observed number of successes (in n = 30 trials) was 7. So, the objective of the test was to

determine whether 7 successes in 30 trials was a reasonable outcome if the true

probability of success in each trial was .711.

Figure 6. 3 provides the following: (i) the Binomial distribution and values for^,

x , and p\ (ii) the null hypothesis, that the probability of at least one missile hitting its

target is .711; (iii) the observed proportion of successes (at least one missile reaching its

target) in thirty Monte Carlo trials; and (iv) the probability that an observed proportion of

successes would be less than or equal to .233, given the probability of at least one missile

hitting its target is .71 1.

(i) Binomial Distribution: b(r, n, p) =~l (I P* -pYx x = 0, 1 , . . ., n

y_ otherwise

Where:

n = number of trials =30

x= nurrber ofsuccesses =7

p = probability ofsuccess = .71

1

(H) Null hypothesis (l\): p(al least one missile reaches its target) = .711

(Hi) P = proportion ofx/n = 7/30 = .233

(iv) p(p<.233|p=.711) = 0.0000

Figure 6. 3 Testing the Null Hypothesis that the Probability of at Least One Missile

Reaching Its Target is .711.

76

As Figure 6. 3 part (iv) shows, if the true probability of at least one missile

reaching its target is .711 (our null hypothesis), then the probability we would observe a

result as unusual as x = 7 or less (the p-value), is essentially 0.0. Therefore we can reject

the null hypothesis with any reasonable level of significance. In other words, applying a

two-tailed hypothesis-test to determine whether our observed proportion of successes

(success is defined as at least one missile reaching its target) supports our null hypothesis

with an acceptable level of confidence, would lead us to reject the null hypothesis. By

rejecting the null hypothesis, we have concluded that the overall probability of at least

one missile reaching its target in thirty Monte Carlo trials is not equal to the .711 derived

from the deterministic simulation. While rejection of the null hypothesis means that we

cannot simply substitute one version of the model for the other, it does not infer that the

deterministic version of EADSIM cannot be of use if time constraints (the operational

deadline) eliminate the possibility of running the stochastic version. It would be very

helpful, however, to know which direction the disparity might go, and to have an estimate

of the bias.

The defending commander, using EADSIM, who chose to go with the

deterministic version of the model, would know that he or she had received a worst case

predicted loss. Planning based on this anticipated result, may have been far more

conservative than necessary, but in wartime this may not be a bad alternative. As long

as the commander was apprised of the potential for gross over-estimation of the enemy's

capabilities, the result from the deterministic simulation may represent a "better than

nothing" estimate. Furthermore, it must be remembered, that the PAPA1 report

(APPENDIX J) is a valuable resource for analysts, providing a means to follow scripted

platforms from launch to intended target, accumulating probability of kill and flight

geometry data along the route. The defending commander for instance, might

concentrate more defensive counter air in the area of the Red Cruise Missile Number 2,

which, according to the PAPA1 report, had only a 70% chance of being destroyed before

it reached its target (vice over 97%, for all other cruise missiles).

On the other hand, had the offensive planners using EADSIM decided they only

had time for the deterministic version of the model, they would know that they had

received an overly optimistic probability that at least one of their missiles hits its target.

77

But the computed probability of at least one missile hitting its target was just the measure

of effectiveness chosen for this experiment. The PAPA1 report would have provided the

offensive planners with valuable data regarding the relative probability of kill for each of

their platforms for each leg of the route to their intended targets. This information might

be used to evaluate strike packages, flight routes, target accessibility, sensor

requirements, or placement of ground assets. In some after-action analysis, contingency

and mission planning, data gathered from running scenarios in the Planner Mode

(deterministic simulation) may be just as valuable as running stochastic simulations for

observed outcomes. It must be stressed that QoS is determined by the user, in our case

the warfighter, who will choose the version of an application that most closely suits the

needs and constraints of the given operational situation, based upon advice from an RMS.

G. SUMMARY

This chapter described the experiment that allowed us to compare the resources

required to execute EADSIM running both stochastic and deterministic simulations, to

compare the results obtained from these two configurations of EADSIM, and to

determine the overhead incurred by the MSHN wrapper. It provided the suggested

minimum hardware requirements to run the EADSIM application and described the

computing environment in which our experiment was conducted. It detailed the

methodology we used to obtain data in support of the experiment's objectives. It

reported the resource usage derived from the thirty stochastic simulation trials and the

observed simulation outcomes and the resource usage from the thirty, deterministic

simulation trials that were run using the wrapped executables. It analyzed, as best as

possible, the observed overhead attributed to the MSHN wrapper. Finally this chapter

weighed the results obtained from the deterministic simulation against the results

obtained from the stochastic simulation.

78

VII. CONCLUSIONS AND FUTURE WORK

This thesis presented the methodology of intercepting, or wrapping, system calls

made by the Extended Air Defense Simulation (EADSIM), a robust C4I, air and missile

warfare modeling application, in order to determine the resources required to execute the

program on a stand-alone workstation. Having demonstrated the ability to measure the

application's resource usage without requiring access to source code, an experiment was

described in which the resource usage was measured running the application in both

Monte Carlo simulations and deterministic simulations. The outcomes obtained from

running EADSIM in both deterministic and stochastic simulations were then weighed

against each other. This chapter will discuss the contributions of this thesis and future

work.

A. CONCLUSION

The goal of MSHN is to provide a resource management system (RMS) that will

enable adaptive applications to provide each subscriber process with its required Quality

of Service (which might include security considerations, deadlines, user priorities, and

preferences) in a distributed, heterogeneous computing environment in which many

processes are competing for shared resources. The MSHN architecture is designed as a

system that is capable of being integrated with, and incorporating, a variety of distributed

system tools (for example, CORBA, ENSEMBLE, and COMPASS) to reap the

maximum benefits from available resources.

In a military environment, where the use of distributed, and possibly

heterogeneous, systems represents both challenge and opportunity, the MSHN RMS

would allow a user to select the most appropriate application, or version of an

application, capable of executing within a specified time, at the proper security level, in

order to deliver the most complete answer achievable within stated time constraints.

Applying this technology to C4I modeling and simulation applications would enable on-

scene commanders and mission planners to simulate complex elements of the decision

process in order to optimize the use of forces and materiel. As discussed in Chapter II,

79

critical to this implementation is the development of adaptive and adaptation-aware

models and decision support applications that exist in different versions, designed to

satisfy user-defined Quality of Service (QoS) parameters.

It was explained in Chapter II that adaptive applications exist in different versions

capable of producing like results (though possibly offering varying degrees of QoS).

MSHN would monitor the use of such adaptive applications and would be able to

terminate one version and start another, possibly from the beginning, if it perceived the

user's QoS requirements were not being met by the currently executing version. In a

tactical environment, this means that the transition to improved QoS recommended by the

MSHN RMS, if accepted by the decision-maker, would transparently enhance his or her

mission effectiveness while remaining within given time constraints.

Chapter IV described the experiment that we conducted to weigh model results

against the resources required to execute deterministic and stochastic model simulations.

This experiment demonstrated MSHN's ability to measure an application's resource

usage without requiring source code. The overhead associated with the MSHN wrapper

was measured and, in Chapter VI, possible causes of this overhead were discussed. The

experiment led to the realization that the MSHN wrapper needs to be modified to collect

finer grained information, specifically, send (), sendto (), sendmsg (), recv (),

recvfrom (), recvmsg (), select (), and listen () system calls may need to be

wrapped. Additionally, more information may be required from the current wrapper.

Chapter VI also used the Binomial distribution to help evaluate the trade-off between the

fidelity of results from EADSIM, a sophisticated C4I simulation.

B. FUTURE WORK

1. Development of a MSHN Application Emulator

Resource usage data gathered by the MSHN wrapper will be used for, among

other things, the MSHN Application Emulator (AE). The AE will produce predictive

statistics regarding resource requirements by simulating the running of applications

without the accompanying overhead. The AE will also be used to monitor the status of

resources not being used by MSHN applications. In order to simulate an application, the

AE must know that application's resource requirements and the probability distribution(s)

80

of those requirements. Data from applications wrapped by the MSHN Client Library,

similar to the data reported for EADSIM resource usage, will be used in the MSHN AE,

along with their appropriate distributions, to simulate applications being executed in a

distributed environment. [DRAK99]

2. Dynamically Determining Distribution Statistics for Resources in

a Distributed Environment

Statistical analysis needs to be conducted, using resource usage data collected by

the MSHN wrapper, to determine whether there is a family of distributions for a given

resource requirement (similar to the Student's t family of distributions) that can be

adequately modeled by an underlying exponential distribution. Assuming such an

exponential family of distributions exists, Monte Carlo simulations will be necessary to

compare the performance of greedy and exhaustive scheduling algorithms using the

exponential family of distributions with the performance of these same scheduling

algorithms using a normal distribution. Research will also have to determine what

sample size is needed for the resultant distribution to be within an acceptable level of

significance of the true exponential distribution. [COOK99]

3. Refining a Model for Use in Scheduling in MSHN

In order to accurately predict an application's performance, in a given distributed

environment, a network system model will need to be developed. This model will use the

MSHN Application Emulator to emulate computationally-intensive and communication-

intensive, synchronous and asynchronous, applications. Using data generated by the

MSHN wrapper and the Application Emulator, the network system model will focus on

predicting run-times for communication-intensive and computationally-intensive

processes. Since MSHN's goal is to provide a resource management system (RMS) that

will provide each subscriber process, when possible, with its required Quality of Service

in a distributed, heterogeneous computing environment, this information is needed to

determine whether next-generation C4I requirements (among others) can be supported by

Commercial-Off-the-Shelf and Government-Off-the-Shelf products. [SHAEOO]

81

4. Testing Resource Monitoring Tools on a Win32/Intel Platform

As part of Information Technology, 21
st

century (IT21) the US Navy has made a

commitment to transition from UNIX workstations to a Windows-based, NT computing

environment. Methods of monitoring resource usage for applications being executed on

Win32x86, or NT, platforms are needed. Such monitoring will parallel the methods used

by the MSHN wrapper in the UNIX computing environment. In other words, a method

of measuring resource usage for an application run on NT workstations and servers will

be sought that does not require access to the application's source code. It is anticipated

that this investigation will include work done with the Executable Editing Library (EEL)

developed by James Larus of the University of Wisconsin, and an extension of EEL for

the Win32 Platform developed by the Etch team from the University of Washington.

[CHENOO]

5. Expansion of Existing MSHN Wrapper Functionality

As discussed in Chapter VI, the MSHN wrapper will need to be expanded to

capture more fine grained data than is currently being measured. This will mean that

several more system calls will need to be intercepted, allowing more resource data to be

analyzed. System calls that need to be wrapped include send (), sendto (),

sendmsg (), recv (), recvfrom (), recvmsg (), select (), and listen ().

Once these system calls have been wrapped by MSHN, further experiments can be run on

EADSIM and other military applications, to better understand resource requirements, and

to facilitate the research discussed in Section B, Subsections 1-4 above.

82

APPENDIX A. MODIFIED README-FIRST FILE

This README FIRST file was written by Matthew Schnaidt for use with the

MSHN Client Library files [SCHN98]. I have modified this file for use with the Solaris

2.5 (Sun5) operating system (changes noted in bold).

FILE: README-FIRST

1. PURPOSE. The purpose of this readme file is to assist the user in
using the MSHN client library. A certain level of understanding of the
client library is assumed. Matt Schnaidt 's December '98 thesis is the
basis for this knowledge. Specifically, Chapters 2, 4, 5, 6, 7 and
Appendices B and C. The author strongly recommends working through the
tutorial in Appendix C prior to trying to run link with the client
library.

2. SUBDIRECTORIES. The subdirectories in this directory contain files
used by the client library as well as test programs used with the
client library. The subdirectories and the purpose of each are
enumerated below.

/syscall_lib This directory contains the files required to
wrap system calls.

/extract This directory contains the makefile that
creates the modified C library used by the syscall library wrappers.

/makeUppercase This directory contains the code for the
makeUppercase.ee and makeLowercase.ee programs.

/clock This directory contains the code for the
clockServer used in estimating clock offsets.

/thesisTutorial This directory contains the code presented in
Appendix C of Matt Schnaidt ' s thesis. This presents a simple tutorial
on how to wrap system calls.

/socketTest This directory contains a client and server
program. These programs are wrapped with the client library. A server
is started on one machine and a client is started on another; these
programs simply transfer a sample file back and forth in order to
demonstrate the client library's functionality.

/testoverhead This directory contains code for testing the
overhead incurred by the client library.

3. RUNNING A WRAPPED PROGRAM. Each subdirectory has a README file that
explains how to use it. In order to wrap an application, the following
is a high level description of tasks that must be accomplished:

a. Create the modified C library, libMSHNc.a. Enter the /extract
directory, and run the mshnlibc*Makefile (where * is the current OS
name - Linux, Sun4 etc) (e.g., make -f mshnlibcSun4Makef ile) . This

83

will create the modified C library, lib-MSHNc . a . Copy this library into
the /syscall_lib directory.

b. Create the client library, MSHN_syscall_lib.o. Enter the
/syscall_lib directory (ensure that you've copied libMSHNc.a to this
directory) . Check the file MSHN_types.h to ensure that the correct
variables are defined (e.g., LINUX, SUN4 , SUN5) , and then compile using
the makefile, libraryMakef ile (e.g . , make -f libraryMakef ile) . At this
point, you now have the client library, MSHN_syscall_lib. o

.

c. Modify the C Run-Time object file. Enter the extract directory.
Copy the C run- time object file to this directory and rename it
Mod_crt*.o (on Sun4 this is crtO.o, so cp /usr/lib/crtO . o . /Mod_crtO . o;
in Solaris 2.5 this is crtl.o, so cp /usr/lib/crtO.o . /Mod_crtl.o) .

Now, modify the C run-time object file's reference to main()
(makeUppercase Mod_crt0.o main or Mod_crtl.o main) . In order to link
any applications with this one, you will link with MSHN_syscall_lib. o

.

Steps a, b,and c need not be repeated.

d. Link your application with the client library and modified C run-
time object file. First, copy the MSHN_syscall_lib. o and Mod_crt0.o
(or Mod_crtl.o) files into this directory. The simplest way to do this
is to compile your application into a single, non-executable, object
file (e.g., myApplication . o) . Then linking will take place in two
phases: preparation, and linking. We are going to modify the link
command generated by the compiler. So, the first step is to determine
the link command that the compiler uses, and to modify it to replace
the system's C run-time file with our own. On the Sun4 machines, we
used the "-v" (verbose) flag with our link command:

g++ -v myApplication. o MSHN_syscall_lib. o -o myApp.

This generates the following output to the screen:

/usr/local/lib/gcc-lib/sparc-sun-sunos4 . 1/2 . 6 . 3 /Id -e start
-de -dp -o myApp /lib/crtO.o -L/usr/local/lib/gcc-lib/sparc-sun-
sunos4 . 1/2 . 6 . 3 -L/usr/local/lib myApplication.© MSHN_syscall_lib. o -

lg++ -lgcc -lc -lgcc

We then replace the system's default link " /lib/crtO .
o" (or

"/lib/crtl.o") with "
. /MSHN_crtO .

o" (or . /MSHN_crtl.o n
) and use this,

as our second step, to generate our executable.

/usr/local/lib/gcc-lib/sparc-sun-sunos4 . 1/2 . 6 . 3/ld -e start -de -dp -o

myApp . /MSHN_crtO . o -L/usr/local/lib/gcc-lib/sparc-sun-sunos4 . 1/2 . 6 . 3 -

L/usr/local/lib myApplication. o MSHN_syscall_lib. o -lg++ -lgcc -lc -

lgcc

or

/usr/local/lib/gcc-lib/sparc-sun-sunos4 . 1/2 . 6 . 3/ld -e start -de -dp -o
myApp . /MSHN_crtl.o -L/usr/local/lib/gcc-lib/sparc-sun-sunos4 . 1/2 . 6 . 3 -

L/usr/local/lib myApplication. o MSHN_syscall_lib. o -lg++ -lgcc -lc -

lgcc

e. Compile and start the clock server. Enter the clock directory,
compile clockServer.ee and then run clockServer. clockServer listens

84

at a fixed port (#12391) defined in clocklncludes .h. Additionally, a

variable is defined in clocklncludes .h if the server runs on a LINUX
platform.

f. Run the application.

85

86

APPENDIX B. MSHN LIBRARY MAKEFILE2

Makefile for MSHN Client Library, modified to explicitly link with C++ and g++

compilers, the math and c libraries.

CC= g++

#uncomment for SUN6 CC=CC

MSHN_syscall_lib.o: MSHN_monitor_RRD_Class . o MSHN_utility .

o

MSHN_MAINc.o\
hashClass.o MSHN_MAIN.o MSHN_network_IO.

o

MSHN_export_RSS_Class .

o

${CC} -03 -c MSHN_syscall_lib. cc -o
MSHN_syscall_temp.

o

Id -i -g MSHN_syscall_temp.o MSHN_monitor_RRD_Class .

o

MSHN_utility.o \

hashClass.o MSHN_MAIN . o MSHN_network_IO.

o

MSHN_export_RSS_Class . o \

-L./ -lMSHNc -o MSHN_syscall_lib.o
Id -r -t -Bstatic MSHN_syscall_temp.

o

MSHN_monitor_RRD_Class . o \

MSHN_utility.o hashClass.o MSHN_MAIN.o
MSHN_network_IO.o MSHN_MAINc . o \

MSHN_export_RSS_Class.o -L./ -lMSHNc -L /usr/local/lib
-lg++ -lstdc++ -lm -lc -o MSHN_syscall_lib.

o

rm MSHN_syscall_temp.

o

rm MSHN_utility.o
rm MSHN_monitor_RRD_Class .

o

rm hashClass.o
rm MSHN_MAIN.o
rm MSHN_export_RSS_Class .

o

rm MSHN_network_I0.o
rm MSHN_MAINc.o

MSHN_monitor_RRD_Class . o : MSHN_monitor_RRD_Class . cc
MSHN_utility.h \

MSHN_types .

h

${CC} -03 -c MSHN_monitor_RRD_Class.cc

MSHN_MAIN.O: MSHN_MAIN . CC
${CC} -03 -c MSHN_MAIN. cc -o MSHN_MAIN .

o

MSHN_MAINc . o : MSHN_MAINc .

c

gcc -c MSHN_MAINc.c -o MSHN_MAINc .

o

87

MSHN_network_IO . o : MSHN_network_IO

.

cc
${CC} -03 -c MSHN_network_I0 . cc

MSHN_utility.o: MSHN_utility . cc MSHN_types.h
${CC} -03 -c MSHN_utility.cc

hashClass. o: hashClass. cc
${CC} -03 -c hashClass. cc

MSHN_export_RSS_Class . o : MSHN_export_RSS_Class

.

cc
${CC} -03 -c MSHN_export_RSS_Class.cc

88

APPENDIX C. MSHN_SYSCALL_LIB.CC

// File: MSHN_syscall_lib. cc
// Name: Matt Schnaidt (modified with permission by W. Porter
// Operating Environment: Linux 2.0.29, SUN OS
// Compiler: g++ for Linux, Unix
// Last Modified: 7 Feb 99

//

// Description: When this file is included in another program, it

// causes all calls from that program to read, write or exit, to
// be "caught", information
// recorded, and passed on to the operating system.
// Inputs: The operating system calls.
// Outputs: none.
// Process: none
// Assumptions: Calling progams input proper data type.
// Warnings: no return function returns. This warning cannot be
// gotten rid of without major work-arounds

.

//
//**•****************

//

#include <stdio.h>
#include <iostream.h>
#include <sys /types . h>
#include <netdb.h> //for gethostent in accept
include <strings.h>
include "MSHN_syscall_lib.h"
include "MSHN_monitor_RRD_Class .h"

#include "MSHN_export_RSS_Class .h"

include "MSHN_utility .h"

include "MSHN_types .

h"

#include "hashClass .h"

ttinclude "clocklncludes .h"

#include "MSHN_network_IO.h"

//OBJECT declarations
//the object that tracks all resource usage
extern MSHN_monitor_RRD_Class resourceMonitor

;

MSHN_export_RSS_Class rssObject;

//the object that keeps track of what the type is of each fd
hashClass fdTable;

//define prototypes for wrapper functions
void exitWrapper (int , void (*) (int))

;

int readWrapper (int , char*, int, int(*)(int, char*, int));
int writeWrapper (int , char*, int, int (

*) (int , char*, int));
int closeWrapper (int , int (

*) (int))

;

int openWrapper (const char*, int, int, int (

*) (const char*, int, int));

int socketWrapper (int, int, int, int(*)(int, int, int))

;

89

int acceptWrapper (int , struct sockaddr*, int*,

int(*)(int, struct sockaddr*, int*));

int connectWrapper (int , struct sockaddr*, int,

int(*)(int, struct sockaddr*, int))

;

//declare the redefined clib symbols as available externally-
extern "C" {

//these must be defined for LINUX
#ifdef LINUX
extern int READ (int, char*, int);
extern int WRITE (int, char*, int) ;

extern int OPEN(const char*, int, int);
extern int CLOSE (int),

•

#endif

//these must be defined for sun 5.5
#ifdef SUN55
extern int _READ(int, char*, int);
extern int _WRITE(int, char*, int);
extern int _OPEN(const char*, int, int);
extern int _CLOSE(int);
extern int _SOCKET (int , int, int);
extern int _ACCEPT(int, struct sockaddr*, int*);
extern int ACCEPT(int, struct sockaddr*, int*);
extern int _CONNECT (int , struct sockaddr*, int);
extern int _C0NNECT2 (int , struct sockaddr*, int);
#endif

//these are required for Linux, Sun 4.x, Sun 5.x
extern int READ (int, char*, int);
extern int WRITE (int, char*, int);
extern int OPEN(const char*, int, int);
extern int CLOSE (int);
extern void EXIT (int);
extern void _EXIT(int);
extern int SOCKET (int, int, int)

;

extern int LISTEN (int, int)

;

extern int ACCEPT (int, struct sockaddr*, int*);
extern int CONNECT (int, struct sockaddr*, int);
extern int SEND (int, const void*, int, unsigned int);
extern int SENDTO(int, const void*, int, unsigned int,

const struct sockaddr*, int);
extern int SENDMSG(int, const struct msghdr*, unsigned int);
extern int RECV(int, void*, int, unsigned int)

;

extern int RECVFROM (int , void*, int, unsigned int, struct sockaddr*
int*)

;

extern int RECVMSG(int, struct msghdr*, unsigned int);
}//end extern "C"

90

= //

//===============NON-ARCHITECTURE SPECIFIC WRAPPER
FUNCTIONS============//

//==
=// .

//

//

// Function: void exitWrapper (

)

// Purpose: Outputs to the RRD this application's name and

// resource utilization, then calls the system's exit

// function.

//

//

void exitWrapper (int status, void (*exitFunction) (int)

)

{

#ifdef MSHN_DEBUG
printf ("--inside exitWrapper-- \n")

;

#endif

resourceMoni tor . updateResourceServer (status)

;

//pass the system call on
(*exitFunction) (status)

;

//will not return
}//end exitWrapper

//

// Function: readWrapper (

)

// Purpose: Calls the system's read system call, calls the

// resource monitor which updates number of reads

// and number of bytes read.

//

int readWrapper (int fd, char* buf, int len,
int (*readFunction) (int , char*, int))

{

//used to measure duration of reads
struct timeval startTime,

endTime;

91

int returnValue = 0,

tempValue = ;

double readDuration;

bucketElement* fdPtr = fdTable . lookup (fd)

;

fd_.type thisFdType;

//if ptr is null, then this is std io
if <fdPtr){

thisFdType = fdPtr->type;
}

else{
thisFdType = TERMINAL_IO;

}//end if

#ifdef MSHN_DEBUG
cout<<" inside readWrapper, fd => "<<fd<<", FdType=>

1 «thisFdType<<endl ;

#endif

if (thisFdType==LOCAL_FILE)

{

//start the clock, make the system call, and stop the clock
returnValue = (*readFunction) (fd, buf, len) ;

//update the read counters
resourceMonitor .updateLocReads (returnValue)

;

}

//if this is a read from across the network, check latency and b/w
else if (thisFdType == NETWORK_IPC)

{

//start the clock, make the system call, and stop the clock
startTime = getClockTime ()

;

returnValue = networkRead (fd, buf, len, startTime,

fdPtr, readFunction)

;

endTime = getClockTime ()

;

//update the terminal read/write information
double elapsedTime = (calcTimeDif f (&startTime, kendTime))

;

//update the network reads
resourceMonitor .updateNetReads (returnValue, elapsedTime)

;

}

else if (thisFdType == LOCAL_IPC)

{

returnValue = (*readFunction) (fd, buf, len);
resourceMonitor .updateLocIPCReads (returnValue)

;

}

//if this is a file accessed over the network, collect access
// time data
else if (thisFdType == TERMINAL_IO)

{

//start the clock, make the system call, and stop the clock
startTime = getClockTime ()

;

returnValue = (*readFunction) (fd, buf, len);
endTime = getClockTime ()

;

92

//calculate the time it took to do the read
double elapsedTime = (calcTimeDif f (&startTime, &endTime))

;

//update the read counters
resourceMonitor .updateTerminalReads (returnValue, elapsedTime)

;

}

else if (thisFdType == REMOTE_FILE)

{

J /start the clock, make the system call, and stop the clock
startTime = getClockTime ()

;

returnValue = (*readFunction) (f d, buf, len) ,-

endTime = getClockTime ()

;

//calculate the time it took to do the read
double elapsedTime = (calcTimeDif f (&startTime, kendTime))

;

resourceMonitor .updateDistReads (returnValue, elapsedTime)

;

}

else{
returnValue = (*readFunction) (fd, buf, len)

;

resourceMonitor .updateLocIPCReads (returnValue)

;

}//end if

#ifdef MSHN_DEBUG
cout« "--about to leave read wrapper, read # bytes "<<returnValue;
cout<<" -- "<<endl<<endl

;

#endif

//returns the size of the read
return (returnValue)

;

} / /end readWrapper (

)

//

// Function: writeWrapper (

)

// Purpose: Calls the system's write system call, calls the

// resource monitor which updates number of writes

// and number of bytes written.

//

//

int writeWrapper (int fd, char* buf, int len,

int (*writeFunction) (int , char*, int))

{

int returnValue;

93

bucketElement* fdPtr = fdTable . lookup (fd)

;

fd_type thisFdType;

//if ptr is null, then this is std io

if (fdPtr){

thisFdType = fdPtr->type;

}

else{

thisFdType = TERMINAL_IO;

}//end if

//if this is a write from across the network, check latency and b/w

if (thisFdType == NETWORK_IPC)

{

//append flags to the front and rear of the message

returnValue = networkWrite (f d, buf, len, writeFunction)

;

resourceMonitor .updateNetWrites (returnValue)

;

}

else{

//pass the system call on

returnValue = (*writeFunction) (fd, buf, len) ;

if (thisFdType==LOCAL_FILE)

{

resourceMonitor .updateLocWrites (returnValue)

;

}

else if (thisFdType == TERMINAL_IO)

{

resourceMonitor .updateTerminalWrites (returnValue)

;

94

}

else if (thisFdType == REMOTE_FILE)

{

resourceMonitor .updateDistWrites (returnValue)

;

}

else{ //by elimination, must be local IPC

resourceMonitor . updateLocIPCWrites (returnValue)

;

}//end if

}//end if

//returns the size of the write

return (returnValue)

;

}//end writeWrapper (

)

//

// Function: closeWrapper (

)

// Purpose: Calls the system's close call, cleans up the

// fd data structure.

//

//

int closeWrapper (int fd, int (*closeFunction) (int)

)

{

int returnValue = (*closeFunction) (fd)

;

#ifdef MSHN_DEBUG

cout«" --inside closeWrapper-- "<<endl;

#endif

95

if (returnValue == 0)

{

fdTable . remove (fd)

;

}//end if

#ifdef MSHN_DEBUG

fdTable .
printHashTable ()

;

cout«" --about to leave close wrapper-- "<<endl<<endl

;

#endif

return (returnValue) ;

}//end closeWrapper (

)

//

// Function: openWrapper (

)

// Purpose: Calls the system's open system call. Evals what

// type of file is opened (if the open is successful), and

// stores this information in the fdTable hash table data

// structure.

//

//

int openWrapper (const char *file_name, int flag, int mode,

int (*openFunction) (const char*, int, int))

{

int returnValue = (*openFunction) (file_name, flag, mode)

;

#ifdef MSHN DEBUG

96

cout<<" --inside openWrapper : fd=> "«returnValue«" f ile=>

cout<<file_name<< " --"<<endl;

#endif

if (returnValue > 0)

{

fdTable.make_entry (returnValue, getFDType (returnValue))

;

}//end if

#ifdef MSHN_DEBUG

fdTable
.
printHashTable ()

;

cout«" --about to leave open wrapper-- "<<endl<<endl

;

#endif

return (returnValue)

;

} / /end openWrapper (

)

//

// Function: socketWrapper (

)

// Purpose: Calls the system's socket sys call. Evaluates what

// type of socket is opened (if the open is successful) , and

// stores this information in the fdTable hash table data

// structure.

//

//

int socketWrapper (int domain, int type, int protocol,

int (*socketFunction) (int , int, int))

97

{

unsigned long args[3];

args[0] = domain;

args [1] = type

;

args[2] = protocol;

int returnValue = (*socketFunction) (domain, type, protocol);

fd_type fdType

;

#ifdef MSHN_DEBUG

cout<<" --inside socketWrapper-- "<<endl

;

cout«" return value => "«returnValue«endl;

#endif

if (returnValue > 0) {

//need to refine this to catch bind/access syscall to ip addr

if (domain == 2){ //2==PF_INET

fdType = NETWORK_IPC;

}

else{

fdType = LOCAL_IPC;

}//end if

fdTable .make_entry(returnValue, fdType)

;

98

}//end if

#ifdef MSHN_DEBUG

fdTable .
printHashTable ()

;

cout«" --about to leave socketWrapper-- "<<endl<<endl

;

#endif

return (returnValue)

;

}//end socketWrapper (

)

//

// Function: acceptWrapper (

)

// Purpose: Calls the system's accept system call, Evaluates what

// type of accept is opened (if the open is successful) , and

// stores this information in the fdTable hash table data

// structure.

//

//

int acceptWrapper (int socket, struct sockaddr* addr, int* addrlen,

int (*acceptFunction) (int , struct sockaddr*, int*))

{

int returnValue

;

fd_type fdType

;

99

bucketElement* fdTablePtr;

//pass on the system call

returnValue = (*acceptFunction) (socket , addr, addrlen)

;

#ifdef MSHN_DEBUG

cout« " --inside acceptWrapper-- "<<endl;

cout« "return value => "<<returnValue<<endl;

#endif

if (returnValue > 0)

{

unsigned long acceptAddress

;

int isLocal;

//this is something of a hack; normally, would dereference the

// struct sockaddr* addr, but we'd need to include socket. h, and

// that would screw up our redefinition of the socket calls.
This

// function gets the address of the machine which we accepted a

// connection

char* tempPtr = (char*) addr ;

;

//memcpy (&acceptAddress , (tempPtr + sizeof (short) + sizeof (u_short))

,

4) ;

//isLocal = resourceMonitor . isHostLocal (acceptAddress)

;

isLocal =1; // ensures reads, writes are local
//update the appropriate entries in the fd table

if (isLocal)

{

//create an entry for this fd in the fd hash table; include

100

3);

// fd type

fdTable.make_entry (returnValue, LOCAL_IPC)

;

}

else{

//create an entry for this fd in the fd hash table; enter

// fd type, ip address of remote machine, clockOffset between

// the remote machine and this machine.

fdTablePtr = fdTable.make_entry(returnValue, NETWORK_IPC)

;

fdTablePtr->ipAddress = acceptAddress;

fdTablePtr->clockOf fset = getClockOffset (acceptAddress, PORT,

}//end if

}//end if

#ifdef MSHN_DEBUG

fdTable.printHashTable() ;

cout« " --about to leave acceptWrapper-- "<<endl<<endl

,

#endif

return (returnValue)

;

}//end acceptWrapper (

)

//

// Function: connectWrapper (int , struct sockaddr*, int*)

// Purpose: Calls the system's connect system call, Evaluates what

// type of connect is opened (if the open is successful), and

// stores this information in the fdTable hash table data

101

// structure.

//

//

int connectWrapper (int socket, struct sockaddr* addr, int addrlen,

int (*connectFunction) (int, struct sockaddr*, int))

{

int returnValue;

fd_type fdType

;

bucketElement* fdTablePtr;

#ifdef MSHN_DEBUG

cout<< " --inside connect wrapper-- "<<endl;

#endif

//pass on the system call

returnValue = (* connectFunction) (socket , addr, addrlen);

if (returnValue == 0)

{

long connec tAddress;

int isLocal;

//this is something of a hack; normally, would dereference the

// struct sockaddr* addr, but we'd need to include socket. h, and

// that would screw up our redefinition of the socket calls.
This

// function gets the address of the machine which we connected a

102

// connection

char* tempPtr = (char*) addr

;

// memcpy (SconnectAddress , (tempPtr + sizeof (short) +

sizeof (u_short)) , 4)

;

.//isLocal = resourceMonitor . isHostLocal (connectAddress)

;

isLocal = 1; //ensures reads, writes are local
if (isLocal)

{

//create an entry for this fd in the fd hash table; include

// fd type

fdTable.make_entry (socket, LOCAL_IPC)

;

}

else{

//create an entry for this fd in the fd hash table; enter

// fd type, ip address of remote machine, clockOffset between

// the remote machine and this machine.

fdTablePtr = fdTable.make_entry (socket , NETWORK_IPC)

;

fdTablePtr->ipAddress = connectAddress;

fdTablePtr->clockOf fset = getClockOffset (connectAddress, PORT,

5);

}//end if

}//end if

tifdef MSHN_DEBUG

fdTable .printHashTable () ;

cout«" --about to leave .connect wrapper-- "<<endl<<endl

#endif

return (returnValue)

;

103

}//end cormectWrapper (

)

= 11

//===============LINUX SPECIFIC WRAPPER-CALLING
FUNCTIONS===============//

= 11

II

#ifdef LINUX
//

// Function: read (

)

// Purpose: "catches" the read system call, calls readWrapper (

)

//

//

int read(int fd, char* buf, int len)

{

#ifdef MSHN_DEBUG
cout«" CAUGHT A read (

) "<<endl

;

#endif
return (readWrapper (fd, buf, len, READ));

}//end read()

//

// Function: write (int fd, char* buf, int len)

// Purpose: "catches" the write system call, calls writeWrapper

(

//

//

int write (int fd, char* buf, int len)

{

return (writeWrapper (fd, buf, len, WRITE))

;

}//end write()

//

// Function: close (int fd)

// Purpose: "catches" the close system call. Calls

// closeWrapper ()

.

//

//

int close (int fd)

{

104

#ifdef MSHN_DEBUG

cout<<"CAUGHT A close () "<<endl

;

#endif

return (closeWrapper (fd, CLOSE))

;

} //end close
#endif

= //

// ===============SUN 5.5 SPECIFIC WRAPPER-CALLING
FUNCTIONS=============/

/

= //

//

#ifdef SUN55
//

// Function: _read(int fd, char* buf, int len)

// Purpose: "catches" the _read system call, calls the
/ / readWrapper ()

.

//

//

int _read(int fd, char* buf, int len)

{

#ifdef MSHN_DEBUG
cout<<" CAUGHT A _read (

) "<<endl

;

#endif
return (readWrapper (fd, buf, len, _READ))

;

}//end _read(int fd, char* buf, int len

//

// Function: _write(int fd, char* buf, int len)

// Purpose: "catches" the _write system call, calls the

// writeWrapper ()

.

//

//

int _write(int fd, char* buf, int len)

105

{

return (writeWrapper (fd, buf, len, _WRITE)

}//end _write(int fd, char* buf, int len

//

// Function: _open (const char *file_name, int flag, int mode)

// Purpose: "catches" the _open system call, calls the

/ / openWrapper ()

.

//

//

int _open(const char *file_name, int flag, int mode)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A _open (

) "<<endl

;

#endif

return (openWrapper (file_name, flag, mode, _OPEN))

;

}//end _open

//

// Function: _close(int fd)

// Purpose: "catches" the _close system call. Calls the

// closeWrapper ()

.

//

//

106

int _close(int fd)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A _close (

) "<<endl

;

#endif

return (closeWrapper (fd, _CLOSE))

;

}//end _close

//

// Function: _socket(int domain, int type, int protocol)

// Purpose: "catches" the _socket system call, calls the

// socketWrapper ()

.

//

//

int _socket(int domain, int type, int protocol)

{

#ifdef MSHN_DEBUG

cout«" CAUGHT A _socket () "<<endl ;

#endif

return (socketWrapper (domain, type, protocol, _SOCKET))

,

}//end _socket(int domain, int type, int protocol)

//

// Function: _accept(int socket, struct sockaddr* addr, int* addrlen)

// Purpose: "catches" the _accept system call, calls the

107

// acceptWrapper ()

.

//

//

int _accept(int socket, struct sockaddr* addr, int* addrlen)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A _accept (

) "<<endl

;

#endif

return (acceptWrapper (socket , addr, addrlen, _ACCEPT))

;

}//end _accept(int socket, struct sockaddr* addr, int* addrlen)

//

// Function: accept (int socket, struct sockaddr* addr, int* addrlen)

// Purpose: "catches" the accept system call, calls the

// acceptWrapper ()

.

//

//

int accept (int socket, struct sockaddr* addr, int* addrlen)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A accept () "<<endl

;

#endif

return (acceptWrapper (socket , addr, addrlen, ACCEPT));

}//end accept (int socket, struct sockaddr* addr, int* addrlen)

108

//

// Function: _connect(int socket, struct sockaddr* addr, int* addrlen)

// Purpose: "catches" the .connect system call, calls the

/ / connectWrapper ()

.

//

//

int _connect(int socket, struct sockaddr* addr, int addrlen)

{

#ifdef MSHN.DEBUG

cout<<"CAUGHT A .connect (

) "<<endl

;

#endif

return (connectWrapper (socket , addr, addrlen, .CONNECT));

}//end .connect (int socket, struct sockaddr* addr, int* addrlen)

//

// Function: _connect2 (int socket, struct sockaddr* addr, int* addrlen)

// Purpose: "catches" the _connect2 system call, calls the

/ / connectWrapper ()

.

//

//

int _connect2 (int socket, struct sockaddr* addr, int addrlen)

{

#ifdef MSHN.DEBUG

cout<<" CAUGHT A _connect2 (

)
" <<endl

;

#endif

return (connectWrapper (socket , addr, addrlen, _C0NNECT2))

;

109

}//end _connect2 (int socket, struct sockaddr* addr, int* addrlen)

#endif

= //

//==========NON-ARCHITECTURE SPECIFIC WRAPPER-CALLING
FUNCTIONS=========/

/

= 11

II

I/

// Function: read(int fd, char* buf, int len)

// Purpose: "catches" the read system call, calls the
/ / readWrapper ()

.

//

//

int read (int fd, char* buf, int len)

{

#ifdef MSHN_DEBUG
cout«" CAUGHT A read () "<<endl ;

#endif
return (readWrapper (fd, buf, len, READ));

}//end read (int fd, char* buf, int len

//

// Function: write (int fd, char* buf, int len)

// Purpose: "catches" the write system call, calls the
// writeWrapper ()

.

//

//

int write (int fd, char* buf, int len)

{

return (writeWrapper (fd, buf, len, WRITE));

}//end write (int fd, char* buf, int len

//

// Function: open (const char *file_name, int flag, int mode)
// Purpose: "catches" the open system call, calls the

/ / openWrapper ()

.

110

//

//

int open (const char *file_name, int flag, int mode)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A open (

) "<<endl

;

#endif

return (openWrapper (file_name, flag, mode, OPEN))
,-

}//end open

//

// Function: close(int fd)

// Purpose: "catches" the close system call, calls the

// closeWrapper ()

.

//

//

int close (int fd)

{

#ifdef MSHN DEBUG

cout«" CAUGHT A close () "<<endl ;

#endif

return (closeWrapper (fd, CLOSE))

;

}//end close

//

// Function: socket (int domain, int type, int protocol)
// Purpose: "catches" the socket system call, calls the

// socketWrapper ()

.

//

//

int socket (int domain, int type, int protocol)
{

#ifdef MSHN DEBUG

cout<<"CAUGHT A socket () "<<endl

;

#endif

return (socketWrapper (domain, type, protocol, SOCKET))

}//end socket (int domain, int type, int protocol)

111

//

// Function: accept (int socket, struct sockaddr* addr, int* addrlen)
// Purpose: "catches" the accept system call, calls the

/ / acceptWrapper ()

.

//

//

int accept (int socket, struct sockaddr* addr, int* addrlen)

{

#ifdef MSHN_DEBUG

cout<<"CAUGHT A accept () "<<endl

;

#endif

return (acceptWrapper (socket , addr, addrlen, ACCEPT));

}//end accept (int socket, struct sockaddr* addr, int* addrlen)

//

// Function: connect (int socket, struct sockaddr* addr, int* addrlen)
// Purpose: "catches" the connect system call, calls the

// connectWrapper
//

//

int connect (int socket, struct sockaddr* addr, int addrlen)

{

#ifdef MSHN DEBUG

cout<<" CAUGHT A connect () "<<endl

;

#endif

return (connectWrapper (socket , addr, addrlen, CONNECT));

}//end connect (int socket, struct sockaddr* addr, int* addrlen)

//

// Function: void _exit(int status)
// Purpose: "catches" the exit system call, calls the

// exitWrapper ()

.

//

//

void _exit(int status)
{

#ifdef MSHN_DEBUG
printf (" --inside _exit wrapper -- \n ")

;

#endif
//pass the system call on

112

exitWrapper (status, _EXIT)

;

//will not return
}//end _exit(int status)

//

// Function: void exit()
// Purpose: "catches" the exit system call, calls the-

// exitWrapper () function.
//

//

void exit(int status)

{

#ifdef MSHN_DEBUG
printf (" --inside exit function--\n")

;

#endif
exitWrapper (status, EXIT)

;

}//end exit(int status)

//end file MSHN_syscal l_lib. cc

113

114

APPENDIX D. MSHN_MONITOR_RRD_CLASS.CC

Code for sending results of MSHN Client Library Wrapper to an files.

//*******•***

// File: MSHN_monitor_RRD_Class . cc

// Name: Matt Schnaidt (modified with permission by W Porter)
// Operating Environment: Linux 2.0.29, Unix 4.1.4
// Compiler: g++ for Linux, Sun OS 4.1.4
// Date: 2 5 Feb 99

//

// Description: Records resource usage information, and
// updates the resource server when called.
// Inputs: Number of bytes read or written.
// Assumptions: Calling progams input proper data type.
// Warnings: none.
//***

//

#include <stdio.h> //for FILE
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
ttinclude <string.h>
#include <sys/time.h>
#include <sys/resource .h> //for rusage
#include <netdb.h> //for get hostent
#include <unistd.h> //for gethostname
#include <netinet/in.h> //for htonl (

)

include "MSHN_monitor_RRD_Class .h"

include "MSHN_types .

h"

#include "MSHN_utility .h"

//local prototype
char* getPsData (int , char*);

#ifdef SUN55

extern "C" {

extern int getrusage (int , struct rusage*);
}//end extern "C"

#endif

#ifdef SUN4
extern "C" {

extern int getrusage (int , struct rusage*);
}//end extern "C"

#endif

//

// Function: MSHN_monitor_RRD_Class : :MSHN_monitor_RRD_Class

(

// Return Value: none.
// Parameter: none.
// Purpose: User-defined default constructor; initializes
// resource data members.

115

//

//

MSHN_monitor_RRD_Class : :MSHN_monitor_RRD_Class ()

:

sizeLocReads (0) , numLocReads () ,

sizeLocWrites (0) , numLocWrites (0) , sizeDistReads (0)

,

numDistReads ()

,

sizeDistWrites () , numDistWrites (0) , timeDistReads (. 0)

,

numTerminalReads () , sizeTerminalReads () , timeTerminalReads (0.0)
numTerminalWrites (0) , sizeTerminalWrites (0) , numNetReads (0)

,

sizeNetReads (0) , sizeNetWrites (0) , numNetWrites (0) ,

timeNetReads (0.0)

,

thisAddress (0)

{

const int HOST_NAME_SIZE = 100;
char hostName [HOST_NAME_SIZE]

;

gethostname (hostName, HOST_NAME_SIZE)

;

struct hostent* thisHostPtr = gethostbyname (hostName)

;

memcpy (&thisAddress, thisHostPtr->h_addr , thisHostPtr->h_length)

;

}//end MSHN_monitor_RRD_Class : :MSHN_monitor_RRD_Class (

)

//destructor
MSHN_monitor_RRD_Class: : -MSHN_monitor_RRD_Class ()

{

} / /end MSHN_monitor_RRD_Class :
: ~MSHN_monitor_RRD_Class (

)

//

// Function: MSHN_monitor_RRD_Class :: isHostLocal (const int& HOST)
// Return Value: int, 1 if host is local, otherwise.
// Parameter: unsigned long, HOST, the host address to compare
// to this one. MUST be in network byte ordering.
// Purpose: If HOST is the same address as this machine,
// returns 1; else returns 0.

//

//

int MSHN_monitor_RRD_Class :: isHostLocal (const unsigned long& HOST)

{

return (thisAddress == HOST);

}//end int MSHN_monitor_RRD_Class :: isHostLocal (const int& HOST)

//

// Function: MSHN_monitor_RRD_Class : : updateLocReads (int& len)

// Return Value: none.
// Parameter: int, the size of the read.
// Purpose: Updates total bytes read locally and total number of
// reads.
//

//

void MSHN_monitor_RRD_Class :: updateLocReads (int& len)

{

//only increase if read is successful
if (len>0){

sizeLocReads += len;

116

}//end if

//count number of reads -- successful or not
numLocReads++

;

#ifdef MSKN_DEBUG
cout<<endl<<" --inside updateLocRead-- "<<endl;
xout« "Total size of local reads = " << sizeLocReads << endl
cout« " --leaving updateLocRead-- "<<endl<<endl

;

#endif

return;
}//end MSHN_monitor_RRD_Class : :updateLocReads (int&)

//

// Function: MSHN_monitor_RRD_Class :: updateLocWrites (int& len)

// Return Value: none.
// Parameter: int, the size of the write.
// Purpose: Updates total bytes written locally and total number of
// writes.
//

//

void MSHN_monitor_RRD_Class :: updateLocWrites (int& len)

{

//only increase if write is successful
if (len>0) {

sizeLocWrites += len;
}//end if

//count number of reads -- successful or not
numLocWrites++;

#ifdef MSHN_DEBUG
cout<<endl<< " --inside updateLocWrites-- " <<endl

;

cout<<"Size of local writes = " << sizeLocWrites << endl

;

cout<< " --leaving updateLocWrites-- "<<endl<<endl

;

#endif

}//end MSHN_monitor_RRD_Class : : updateLocWrites (int&)

//

// Function: MSHN_monitor_RRD_Class : : updateDistReads (int& len, doubled
time)

// Return Value: none.
// Parameter: int, the size of the read.
// Purpose: Updates total bytes read locally and total number of
// reads on network file server.
//

//

void MSHN_monitor_RRD_Class :: updateDistReads (int& len, doubled time)

{

//only increase if read is successful
if (len>0){

sizeDistReads += len;

117

timeDi stReads += time;
}//end if

//count number of reads -- successful or not
numDi s tReads + +

;

#ifdef MSKN_DEBUG
„cout<<endl<<" --inside updateDistRead-- "<<endl; -

cout<< "Total size of network fs reads = " << sizeDistReads <<
endl ;

cout<< " --leaving updateDistRead-- "<<endl<<endl

;

#endif

return;
}//end MSHN_monitor_RRD_Class : rupdateDis tReads (int&, doubled time)

//

// Function: MSHN_monitor_RRD_Class :: updateDistWrites (int& len)

// Return Value: none.
// Parameter: int, the size of the write.
// Purpose: Updates total bytes written and total number of
// writes on network file server.
//

//

void MSHN_monitor_RRD_Class : :updateDistWrites (int& len)

{

//only increase if write is successful
if (len>0)

{

sizeDistWrites += len;
}//end if

//count number of reads -- successful or not
numDistWrites++;

#ifdef MSHN_DEBUG
cout<<endl<<" --inside updateDistWrites-- "<<endl

;

cout<<"Size of network fs writes = " << sizeDistWrites << endl;
cout<< " --leaving updateDistWrites-- "<<endl<<endl

;

#endif

}//end MSHN_monitor_RRD_Class: : updateDistWrites (int&)

//

// Function: MSHN_monitor_RRD_Class : : updateNetReads (int& len, doubled
time)
// Return Value: none.
// Parameter: int, the size of the read.
// Purpose: Updates total bytes read locally and total number of

// reads on network file server.
//

//

void MSHN_monitor_RRD_Class :: updateNetReads (int& len, double& time)

{

//only increase if read is successful
if (len>0)

{

118

sizeNetReads += len;
timeNetReads += time;

}//end if

//count number of reads -- successful or not
numNetReads + + ;

#ifdef MSHN_DEBUG
cout<<endl<< " --inside updateNetRead-- "<<endl;
cout<<" Total size of network reads = " << sizeNetReads << endl;
cout<< " --leaving updateNetRead-- " <<endl<<endl

;

#endif

return;
}//end MSHN_monitor_RRD_Class: :updateNetReads (int&, doubled time)

//

// Function: MSHN_monitor_RRD_Class : :updateNetWrites (int& len)

// Return Value: none.
// Parameter: int, the size of the write.
// Purpose: Updates total bytes written and total number of

// writes on network file server.

//

//

void MSHN_monitor_RRD_Class: : updateNetWrites (int& len)

{

//only increase if write is successful
if (len>0)

{

sizeNetWrites += len;
}//end if

//count number of reads -- successful or not
numNetWrites++

;

#ifdef MSHN_DEBUG
cout<<endl<<" --inside updateNetWrites-- "<<endl

;

cout<<"Size of network fs writes = " << sizeNetWrites << endl
cout<< " --leaving updateNetWrites-- "<<endl<<endl

;

#endif

}//end MSHN_monitor_RRD_Class : : updateNetWrites (int&)

//

// Function: MSHN_monitor_RRD_Class : : updateLocIPCReads (int& len)

// Return Value: none.
// Parameter: int, the size of the read.
// Purpose: Updates total bytes read locally and total number of
// reads on network file server.
//

//

void MSHN_monitor_RRD_Class: : updateLocIPCReads (int& len)

{

//only increase if read is successful
if (len>0){

sizeLocIPCReads + = len;

119

}//end if

//count number of reads -- successful or not
numLoc I PCReads + +

;

#ifdef MSHN_DEBUG
cout<<endl<< " --inside updateLocIPCRead-- "<<endl;
_cout<< "Total size of network reads = " << sizeLoc I PCReads <<

endl ;

cout« " --leaving updateLocIPCRead-- " <<endl<<endl

;

#endif

return;
}//end MSKN_monitor_RRD_Class : :updateLocIPCReads (int&)

//

// Function: MSHN_monitor_RRD_Class : :updateLocIPCWrites (int& len)

// Return Value: none.
// Parameter: int, the size of the write.
// Purpose: Updates total bytes written and total number of
// writes on network file server.
//

//

void MSHN_monitor_RRD_Class : :updateLocIPCWrites (int& len)

{

//only increase if write is successful
if (len>0)

{

sizeLocIPCWrites += len;
}//end if

//count number of reads -- successful or not
numLoc I PCWrites++

;

if (0) {

cout<<endl<<" --inside updateLocIPCWrites-- "<<endl

;

cout<<"Size of network fs writes = " << sizeLocIPCWrites << endl
cout<< " --leaving updateLocIPCWrites-- "<<endl<<endl

;

}//end if

}//end MSKN_monitor_RRD_Class : : updateLocIPCWrites (int&)

//

// Function: MSHN_monitor_RRD_Class : : updateTerminalReads (int& len,

double& time)
// Return Value: none.
// Parameter: int, the size of the read.
// Purpose: Updates total bytes read and total number of
// reads from terminal and time to do reads.
//

//

void MSHN_monitor_RRD_Class :: updateTerminalReads (int& len, doubled
time)

{

//only increase if read is successful
if (len>0)

{

120

sizeTerminalReads += len;

timeTerminalReads += time;
}//end if

//count number of reads -- successful or not
numTerminalReads + + ;

#ildef MSHN_DEBUG
cout<<endl<< " --inside updateTerminalRead-- "<<endl

;

cout<< "Total size of terminal reads = " << sizeTerminalReads <<

endl ;

cout<< " --leaving updateTerminalRead-- "<<endl<<endl;
#endif

return;
}//end MSHN_monitor_RRD_Class : rupdateTerminalReads (int&, doubled time)

//

// Function: MSHN_monitor_RRD_Class : : updateTerminalWrites (int& len)

// Return Value: none.
// Parameter: int, the size of the write.
// Purpose: Updates total bytes write and total number of

// writes from terminal and time to do writes.
//

//

void MSHN_monitor_RRD_Class :: updateTerminalWrites (int& len)

{

//only increase if write is successful
if (len>0){

sizeTerminalWrites += len;
}//end if

//count number of writes -- successful or not
numTerminalWrites++;

if (0)

{

cout<<endl<<" --inside updateTerminalWrite-- "<<endl

;

cout« "Total size of terminal writes = " << sizeTerminalWrites <<

endl ;

cout<< " --leaving updateTerminalWrite-- "<<endl<<endl;
}//end if

return;
}//end MSHN_monitor_RRD_Class : : updateTerminalWrites (int&)

//

// Function: MSHN_monitor_RRD_Class : : updateResourceServer (int status)
// Return Value: none.
// Parameter: none.
// Purpose: Updates the resource server with the total
// resources used by this application. Updates by
// application name. Currently, this is simply printed
// to the screen. Another student is developing a CORBA
// persistent object to act as the resource server.
//

121

//

void MSHN_monitor_RRD_Class : : updateResourceServer (int status)

{

int checkPid; //this process' Pid

//creates output file
ofstream outputLoc ("MSHN_outfile . txt " , ios::out);

//if debug is set, output debug info
#ifdef MSHN_DEBUG

cout<<endl<<" --inside updateResourceServer-- " <<endl

;

#endif

#ifndef OUTPUT_TO_FILE
ostream& outputLoc = cout;

#endif

appEndTime = getClockTime ()

;

outputLoc<<" Simulating update to Resource Requirements
Database " <<endl

;

outputLoc<< "Application name: "<<exeName<<endl

;

outputLoc<<" Input args : "<<inputArgs<<endl

;

if (status == 0)

{

outputLoc<< "Application terminated normal ly " <<endl

;

}

else{
outputLoc<< "Application terminated abnormally, exit status

"<<status<<endl

;

}//end if

outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<

outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<

outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<

outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<
outputLoc<<

LOCAL FILE DATA "«endl;
Total Bytes Read: "<<sizeLocReads

;

Written: " <<sizeLocWrites<<endl

;

Number of Reads: "<<numLocReads;
Writes : "<<numLocWrites<<endl;

NETWORK FILE DATA "«endl;
Total Bytes Read: "<<sizeDistReads

;

Written: " <<sizeDistWrites<<endl;
Number of Reads: "<<numDistReads

;

Writes :

" <<numDistWrites<<endl

;

Total Time Reading: "<<timeDistReads<<endl

;

TERMINAL I/O DATA "«endl;
Total Bytes Read: "<<sizeTerminalReads

;

Written: " <<sizeTerminalWrites<<endl

;

Number of Reads: "<<numTerminalReads;
Writes :

" <<numTerminalWrites<<endl

;

Total Time Reading: "<<timeTerminalReads<<endl

;

NETWORK DATA "«endl;
Total Bytes Read: "<<sizeNetReads

;

Written: " <<sizeNetWrites<<endl

;

Number of Reads: " <<numNetReads

;

Writes :

" <<numNetWrites<<endl

;

122

outputLoc<<" LOCAL IPC DATA "<<endl;
outputLoc<< "Total Bytes Read: "<<sizeLocIPCReads

;

outputLoc<<" Written: " <<sizeLocIPCWrites<<endl

;

outputLoc<< "Number of Reads: "<<numLocIPCReads

;

outputLoc<<" Writes: " <<numLocIPCWrites<<endl

;

outputLoc<<endl<< "Application' s Wall Clock Runtime:- ";

outputLoc<<calcTimeDif f (&appStartTime, &appEndTime)

;

outputLoc<<" seconds "<<endl

;

//this determines and outputs how long the process ran
struct rusage rusageStruct

,

*rusagePtr = &rusageStruct

;

getrusage (RUSAGE_SELF, rusagePtr)

;

double userTime =
((double) (rusagePtr->ru_utime . tv_usec) /1000000 .) +

rusagePtr->ru_utime . tv_sec;
double sysTime = ((double) (rusagePtr->ru_stime . tv_usec) /1000000 .) +

rusagePtr->ru_stime . tv_sec

;

outputLoc<<endl

;

outputLoc<< "system cpu time = "<<sysTime<< " seconds "<<endl

;

outputLoc<< "user cpu time = "<<userTime<<" seconds " <<endl

;

outputLoc<<"max res set size = "«rusagePtr->ru_maxrss«"
pages "<<endl ;

outputLoc<< "unshared memory = "<<rusagePtr->ru_idrss<<"
pages " <<endl ;

outputLoc<< "page faults = "<<rusagePtr->ru_maj f lt<<endl

;

outputLoc<<" at program termination, the memory stats were:
"<<endl

;

#ifdef SUN55
int thisPid = getpid();
outputLoc<< "num of physical pages in memory = "<<getPsData (thisPid,

" osz") <<endl

;

outputLoc<< "num of pages in virtual memory = "<<getPsData (thisPid,
"vsz") <<endl;

outputLoc<< "num of pages in resident set = "<<getPsData (thisPid,
"rss") <<endl;
#endif

return;
}//end MSHN_monitor_RRD_Class : : updateResourceServer (

)

//

// Function: MSHN_monitor_RRD_Class :
:
getPsData

// (int thisPid, char* psCommand)
// Return Value: char*
// Parameter: thisPid, psCommand
// Purpose: gets process status (ps) data
//

//

char* getPsData (int thisPid, char* psCommand)
{

char thisPidPtr [12] ; //declares a char array for thisPid

123

sprintf (thisPidPtr , "%d\0" , thisPid) ; //places thisPid in char array-

char commandString [100] = "ps -p "; //declares variable for ps
commands

char *buffer = (char*) malloc (100*sizeof (char)) ; //declares string
for

//buffer output

strcat (commandString, thisPidPtr)

;

strcat (commandString, " -o "
)

;

strcat (commandString, psCommand)

;

char tempfilename [100] = "mshnTempFile" ,- //declares string for file
name

strcat (tempf ilename, thisPidPtr)

;

strcat (commandString, "= > "
) ;

strcat (commandString, tempfilename)

;

system(commandString) ; //uses command string for system -ps call

ifstream inFile (tempfilename) ,

•

inFile>>buf fer

;

char remove[100] = "rm";
strcat (remove, " "

)

;

strcat (remove, tempfilename)

;

sys tem (remove) ; //removes file created to hold buffer contents
return (buffer)

;

}//end getPsDataO

//

// Function: MSHN_monitor_RRD_Class :: enterExeName
// (const char* thisName)
// Return Value: none.
// Parameter: thisName.
// Purpose: Sets exeName equal to thisName
//

//

//assign the executable name to exeName
void MSHN_monitor_RRD_Class :: enterExeName (const char* thisName)

{

strcpy (exeName, thisName);
return;

}//end MSHN_monitor_RRD_Class :: enterExeName (const char* thisName)

//

// Function: MSHN_monitor_RRD_Class : :getExeName
//

// Return Value: none.
// Parameter: thisName.
// Purpose: gets thisName
//

124

//

char* MSHN_monitor_RRD_Class : :
getExeName (

)

{

return (exeName)

;

}//end MSHN_raonitor_RRD_Class : :getExeName(

// _ „

// Function: MSHN_monitor_RRD_Class : : enterlnputArgs
// (const char* theseArgs)
// Return Value: none.
// Parameter: char*, theseArgs a string containing all input
// arguments.
// Purpose: Sets inputArgs equal to theseArgs
//

//

void MSHN_monitor_RRD_Class :: enterlnputArgs (const char* theseArgs)

{

strcpy (inputArgs , theseArgs);
return;

}//end MSHN_monitor_RRD_Class :: enterlnputArgs (const char* theseArgs)

//end file MSHN_monitor_RRD_Class . cc

//

// Function: MSHN_monitor_RRD_Class : : enterAppStartTime
// (const struct timeval* startTime)
// Return Value: none.
// Parameter: const struct timeval*, the start timeof the
// application.
// Purpose: sets appStartTime equal to startTime.
//

// //enter the start time of this application
void MSHN_monitor_RRD_Class :: enterAppStartTime (const struct timeval*
startTime)
{

appStartTime . tv_sec = startTime->tv_sec

;

appStartTime . tv_usec = startTime->tv_usec;

}//end MSHN_monitor_RRD_Class : : enterAppStartTime (

)

125

126

APPENDIX E. RUN SCRIPT FOR DEMO300

"sh" run script for Demo300 that launches EADSEM executables, sets clockserver

for wrapper, and resets random number generator seed by tying it to the system clock.

#!/bin/sh

C3IDATA=/users /work4/nwporter/eadsim/data
export C3IDATA

Scenario=Demo3 00

if [$# -eq 1] ; then
Scenario=$l

fi

CrashPath=" /users /work4/nwporter /crash"
ExePath=" /users /work4/nwporter/eadsim/ execute /SUN2

"

clockServer &

cd $CrashPath/c3i
$ExePath/c3i $Scenario v date '+%H%M%S' X &

sleep 1

cd $CrashPath/det
$ExePath/detect $Scenario v date '+%H%M%S' X &

sleep 16

cd $CrashPath/fp
$ExePath/fp $Scenario &

127

128

APPENDIX F. RUN SCRIPT FOR TRANSFER OF DATA

"sh" run script to transfer wrapper and simulation results for each Monte Carlo

run to a separate directory. Script assigns unique "run number" extension to each file of

output data associated with a given run.

#! /bin/sh

if [!
"$#" -eq 1]

then
echo "Usage: $0 version_number"
exit 1

fi

RUN_VER="$1"
ROOT_DIR=/users/work4/nwporter/

cd ${ROOT_DIR:?}/eadsim
if [-f mcreports/Threatsum.run${RUN_VER: ?}]

then
echo "Version ${RUN_VER:?} of data files exist"
exit 1

fi

cp Threatsum. engrpt mcreports /Threatsum. run$ {RUN_VER: ?}

cp BlueAction. engrpt mcreports/BlueAction. run$ {RUN_VER: ?}

cp RedAct ion. engrpt mcreports/RedAction . run$ {RUN_VER: ?}

cd /users/work4/nwporter /crash/
cd c3i
cp MSHN_outfile.txt
/users/work4/nwporter/eadsim/mcreports/c3i_outf ile . run$ {RUN
_VER : ?

}

cd /users/work4/nwporter/crash/
cd fp
cp MSHN_outfile.txt
/users /work4/nwporter/eadsim/mcreports/fp_outf ile . run$ {RUN_
VER:?}
cd /users/work4/nwporter /crash/
cd det
cp MSHN_outfile.txt
/users/work4/nwporter/eadsim/mcreports/det_outf ile . run$ {RUN
_VER : ?

}

cd /users/work4 /nwporter/eadsim/run
cd c3i

129

cp Demo3 0_l .c3ipstat
/users /work4/nwporter/eadsim/mcreports/c3ipstat. run$ {RUN_VE
R:?}
cd /users /work4/nwporter/eadsim/run
cd detect
cp Demo3 0_l .detpstat
/users/work4/nwporter/eadsim/mcreports/detpstat . run$ {RUN_VE
R:?}
cd /users /work4/nwporter/eadsim/run
cd fp
cp Demo3 0_1 . fpps tat
/users/work4/nwporter/eadsim/mcreports/fppstat . run$ {RUN_VER
:?}

cp Demo3 0_l . stathdr
/users/work4/nwporter/eadsim/mcreports/stathdr . run$ {RUN_VER
:?}

130

APPENDIX G. RUN SCRIPT FOR TRANSFER OF DETERMINISTIC DATA

"sh" run script to transfer wrapper and simulation results for each deterministic

run to a separate directory. Script assigns unique "run number" extension to each file of

output data associated with a given run.

#!/bin/sh

if [! "$#" -eq 1]

then
echo "Usage: $0 version_number

"

exit 1

fi

RUN_VER= " $
1

"

ROOT_DIR= /users /work4/nwporter/

cd ${ROOT_DIR: ?}/eadsim
if [-f dreports/c3ipstat .run${RUN_VER: ?}]

then
echo "Version ${RUN_VER:?} of data files exist"
exit 1

fi

cd /users/work4/nwporter/eadsim/ run
cd c3i
cp Demo3 0_l .c3ipstat
/users /work.4/nwporter/eadsim/reports/c3ips tat . run$ {RUN_VER:
?}

cd /users/work4/nwporter/eadsim/ run
cd detect
cp Demo3 0__l .detpstat
/users/work4/nwporter/eadsim/dreports/detpstat . run$ {RUN__VER

:?}

cd /users/work4/nwporter/eadsim/ run
cd fp
cp Demo3 0_l . fppstat
/users/work4/nwporter/eadsim/dreports/fppstat . run$ {RUN_VER

:

?}

131

132

APPENDIX H. MSHN WRAPPER OUTPUT: MONTE CARLO TRIALS

Note: Only data that generated a distribution is displayed.

Descriptive Statistics

9B ' Confidence Interval fo

i

17.3 17.4
'

75 17.6 17/

I I

' 17.8 17.9

!

iao
i

i

iai

Variable: C3I User

CPU Time

Anderson-Darling NormalityTest

ASquared 0.193

P-value: 0.886

rVean 17.7177

StDev 0.8383

Variance 0.702667

Skewness 0.176778

Kurtosis 5.54E-03

N 30

Mnimum 15.8600

IstQjartile 172450
IVfedan 17.6650

3rdQjartile 182850
Maamum 19.7400

95% Confidence Interval tor Vfedan

95%Confidence Interval for Mi

17.4047 18.0307

95%Confidence Interval for Sgma

0.6676 1.1269

95% Confidence Interval for Ivfedan

17.3637 18.0871

Descriptive Statistics

155 16: 17.5 ias 19.5

95% Confidence Interval for Vu

3.72 16.82 16.92 17.C2 17.12 17.22 17.32 17.42 17.52

I I ! : : I ! I i

95% Confidence Interval for .Vtetiian

Variable: FP User

CPU Time

Anderson-Darling Normality-Test

A-Squared: 0.545

P-Value: 0.148

fVfean 17.1253

SfDev 0.8911

Variance 0.794012

fSkewness 0.991135

Kurtosis 226742
N 30

Mnimum 15.3600

IstQjartile 16.6200

IVtedian 16.8950

3rdQuartile 17.6450

Maxmum 20.1300

95% Confidence Interval for rVLi

16.7926 17.4581

95% Confidence Interval for Sgma

0.7097 1.1979

95%Confidence Interval fa fx/edian

16.7869 17.4603

133

Descriptive Statistics

95% Confidence Interval for Mi

i i

15.85 1595 1605 16.15 15.25 16.35 16.45 16.55 16.65

I I i I i I I I I

95% Confidence interval for ivtedian

Variable: Detect User

CPU Time

Anderson-Darling NormalityTest

ASquared: 0.506

P-value: 0.186

N/fean 16.3160

StDev 0.7930
variance 0.628887

Skewness 0.893720

Kurtosis 0.675003

N 30

Mnimum 14.9700

IstCuartile 15.7625

Median 162150
3rdCuartile 16.7700

Mwmum 18.6100

95% Confidence Interval for Mj

16.0199 16.6121

95% Confidence Interval forSgma

0.6316 1.0661

95% Confidence Interval for Median

15.8823 16.5026

Descriptive Statistics

95% Confidence Interval for Mj

aco
i

3.05

I

3.10

95% Confidence interval for rvedian

Variable: C3I System

CPU Time
Anderson-Darling NormalityTest

A-Squared: 0.357

P-value: 0.433

Mean 3.02600

StDev 0.14940
variance 223E-02
Skewness -2.0E-01

Kurtosis -3.3E-01

N 30

Mnimum 2.67000

IstCuartile 2.92250

Ivtedian 3.05000
3rd Quarrjle 3.12250

Mw'mum 3.33000

95% Confidence Interval for Mj

2.97021 3.08179

95% Confidence Interval for Sgma
0.11899 020085

95% Confidence Interval for Median

2.96000 3.10771

134

Descriptive Statistics

95% Confidence Interpol for Mi

L05 ais 3.25 335

95% Confidence Interval for Median

Variable: FP System

CPU Time
Axierson-Darling NormalityTest

A-Squared: 0.513

P-Value: 0.179

Mean 3.19667

StDev 021979
\&riance 4.83E02
Skewness -5.7E01

Kurtosis 0.106161

N 30

Mnimum 2.58000

IstQuartile 3.02000

Median 323500
3rdQjartjle 3.35750

Maximum 3.58000

95% Confidence interval for Mj

3.11460 327874

95% Confidence Interval for Sigma

0.17504 029546

95% Confidence Interval for Median

3.05229 3.33543

Descriptive Statistics

95% Confidence interval for Mj

5.65 5.75 5.85 5.95 6.05

t

Variable: Detect System

CPU Time
/VKJerson-Darling NormalityTest

ASquaredt 0.528

P-Value: 0.164

Mean 5.85567

StDev 0.43027
variance 0.185129

Skewness 0.833605

Kurtosis 0.858158

N 30

Mnimum 5.10000

1stCuartjle 5.53500

Median 5.73000

3rdCuartile 6.10250

Maxmum 7.15000

95% Confidence Interval for Mj

5.69500 6.01633

95% Confidence Interval for Sgma
0.34267 0.57841

95% Confidence Interval for Median
95% Confidence Interval for Median

5.66686 6.05000

135

Descriptive Statistics

90 94 96

!

102

I

95% Confidence Interval foriVU

93
i

94 95

1 !

96

Variable: C3I Wall

Clock Time
Anderson-Darling NormalityTest

A-Squared:

P-V&lue:

1.158

0.004

fvfean

StDev
Variance

Skewness
Kurtosis

N

94.5186

32978
10.8752

123957
1.19005

30

Mnimum
IstQjartile

IVfedan

3rdQuartile

Mwmum

90.150

92.318

93.814

95.862

104.418

95% Confidence Intenal for Mj

93287 95.750

95%Confidence Intenal forSgma
2.626 4.433

95% Confidence Interval for N/edian
95% Confidence Interval for rVtedian

92.670 94.652

Descriptive Statistics

95%Gortficience Interval for Mj

75.5 765 77.5

I

785

Variable: FPWall

Clock Time
Axlerson-Darling NormalityTest

ASquarect 1.159

P-Value 0.004

Msan

SDev
Variance

Skewness

Kurtosis

N

77.1691

32677
10.6780

125967
124295

30

Mnimum
IstQjartile

Msdan
3rdQjartjle

Mwmum

729853
75.0810

76.4142

78.5339

87.0575

95%Confictence Interval fa M=dan

95%Gonfidence Irterval for Mj

75.9489 78.3893

95%Gortidence Interval forSgma

26024 4.3928

95%Gorficlence Interval fa MbcJan

75.3884 77.3701

136

Descriptive Statistics

95% Confidence Interval for Mj

91.5

I

925 9as 94.5

95% Confidence Interval for fvfedian

Variable:

Detect Wall

Clock Time
Anderson-Darling NormalityTest

A-Squared:

P-value:

1219
0.003

IVfean

StDev
variance

Skewness
Kurtosis

N

93.3564

32702
10.6940

128097
1.29780

30

Mnimum
1st Cuartile

Ivtedian

3rd Qjartile

Ma*mum

89.135

91299
92.574

94.672

103287

95% Confidence Interval for Mj

92.135 94.578

95%Confidence Interval for Sgma
2.604 4.396

95% Confidence Interval for Ivfedian

91.614 93.592

Descriptive Statistics

95% Confidence Interval for Mj

i

16CC0C

i

165000 170000

95% Confidence Interval for Madia-

Variable: C3I IPC

Bytes Read
Anderson-Darling NormalityTest

ASquared: 0.698

P-value: 0.061

M9an
StDev
variance

Skewness
Kurtosis

N

166758

8602
73992428
6.34E-02

-1.10990

30

Mnimum
IstQiartJIe

M9dian
3rd Qjartile

Maxmum

149864

160522
164812
174002
179904

95% Confidence Interval for Mj

163546 169970

95% Confidence Interval for Sgma
6851 11564

95% Confidence Interval for fvfedan

161100 172524

137

Descriptive Statistics

3500 3900 4300 4700

95% Confidence Internal for Mi

3680 3780 3880

95% Confidence Interval for K/tedian

Variable: FPIPC
Bytes Read
ATderson-Darling NormalityTest

A-Squared:

P-Value:

3.569

0.000

Ivfean

StDev
Variance

Skewness
Kurtosis

N

3782.13

235.80
55603.6

3.14058

10.7451

30

Mnimum
1st Oiartile

Madian
3rd Oiartile

Maamum

3584.00

3676.00

3728.00
3808.00

483200

95% Confidence Interval for Mj

3694.08 3870.18

95% Confidence Interval for Sigma

187.80 317.00

95% Confidence Interval for Madian

3696.00 3790.85

Descriptive Statistics

72000 76000

!

58000 80000 84000

I |

!

88000

!

• •

95% Confidence Interval for Mj

I

I

770X
1
I

78000 79000

I I

80000
I

Variable: Detect

IPC Bytes Read

AxJerson-Darling NormalityTest

A-Squared:

P-Value:

Maan
StDev
Variance

Skewness
Kurtosis

N

Mnimum
1st Cuartjle

Madian
3rd Oiartile

Maxmum

0.890

0.020

784112
4229.0

17884811

-28E-01

1.12307

30

67520.0

76630.0

78284.0

80210.0

883520

95% Confidence interval for Madian

95% Confidence Interval for Mj

76832.0 79990.4

95% Confidence Interval for Sgma
3368.0 56852

95% Confidence Interval for Madian

77516.1 79646.9

138

Descriptive Statistics

84000

95% Confidence interval forMj

1

•

68000 69000 70000

[

71000

Variable: C3I IPC

Bytes Written

Anderson-Darling NormalityTest

A-Squared: 0.870

P-value: 0.022

fvfean 69327.5

StDev 4128.7

variance 17046254

Skewness 1.64561

Kurtosis 4.14283

N 30

Mnimum 64024.0

IstQuarrjIe 66364.0

fVedian 68792.0

3rdQjartile 70874.0

Ma*mum 84752.0

95% Confidence Interval for fvfedian

95% Confidence Interval for Mj

67785.8 708692

95% Confidence Interval for Sgma
3288.1 5550.3

95% Confidence Interval for Madian

67560.3 70250.0

Descriptive Statistics

20C0C00 2100000 2200000 2300000 2400000

95% Confidence interval for Mj

2200000

I

2250000 230OO0C

1 i

95% Confidence interval for ivedian

Variable: FP IPC

Bytes Written

Anderson-Darling NormalityTest

ASquared: 0.369

P-value: 0.4C4

IVfean

StDev
variance

Skewness
Kurtosis

N

2244479
116675

1.36E+10

-12E-01

-4.7E01

30

Mnimum
Istdiarrjle

fvfedian

3rdQjarfjle

Maxmum

1982960
2173564
2219934
2322549
2460432

95% Confidence Interval for Mj

2200912 2288046

95% Confidence Interval for Sigma

92921 156848

95% Confidence Interval for Madian

2180069 2304801

139

Descriptive Statistics

1240300 1323000 1400000 148000C

95% Confidence Interval for Mj

i i : i i

1320000 1340000 1360000 1390000 1400000

95% Confidence Interval for iVedian

Variable: Detect IPC

Bytes Written

Anderson-Darling NormalityTest

ASquarecL 0.301

P-VHue 0.557

N/fean 1358588

StDev 73026
Variance 5.33E+09

Skewness 0215106
Kurtosis -9.0EO1

N 30

Mnimum 1225124

IstCuartile 1302537

Median 1350522
3rdQjarrjle 1417316

rv/axmum 1502744

95% Confidence Interval for Mj

1331319 1385856

95% Confidence Interval for Sigma

58159 98170

95% Confidence Interval for Median

1312202 1399865

Descriptive Statistics

18500 19500 20500 21500 22500

I

95% Confidence interval fa Mj

2000C 20500 21000 21500

95% Confidence Interval for Median

Variable: C3I IPC

Number of Reads
Anderson-Darling NormalityTest

ASquared: 0.698

P-Value: 0.061

Msan 20844.8

StDev 10752
variance 1156132

Skewness 6.34E02

Kurtosis -1.10990

N 30

Mnimum 18733.0

IstCuartile 20065.3

Median 20601.5

3rdQjartile 21750.3

Maxmum 22488.0

95% Confidence Interval fa Mj

20443.3 21246.3

95% Confidence Interval fa Sigma

856.3 1445.5

95% Confidence Interval fa Median

20137.5 21565.5

140

Descriptive Statistics

95% Confidence interval for Mi

<l
i

465 470 475 480
I

485

1

95° o Confidence Interna! for h/eoSan

Variable: FPIPC
Number of Reads
Axletson-Darling NormalityTest

/VSquared 3.569

P-Value: 0.000

Msan 47Z767
StDev 29.476

Variance 868.806

Skewness 3.14058

Kurtosis 10.7451

N 30

Mnimum 448.000

IstCuartile 459.500

Median 466.000

3rdQjartile 476.000

Maxmum 604.000

95% Confidence Interval for Mj

461.760 483.773

95% Confidence Interval forSgma
23.475 39.624

95% Confidence Interval for Median

462000 473.856

Descriptive Statistics

95% Confidence Interval for Mj

9600

I

9700 9800 9900 10CCC

Variable: Detect IPC

Number of Reads
Anderson-Darling NormalityTest

A-Squared 0.890

P-Value: 0.020

Mean 9801.40

StDev 528.63

Variance 279450
Skewness -28E-01

Kurtosis 1.12307

N 30

Mnimum 8440.0

IstQuartJIe 9578.7

Median 9785.5

3rdCiJartile 100262
Maxmum 11044.0

95% Confidence interval for Vfecfian

95% Confidence Interval for Mj

9604.0 9998.8

95% Confidence Interval for Sigma

421.0 710.6

95% Confidence Interval for Median

9689.5 9955.9

141

Descriptive Statistics

1000 1100 1200 1300

95% Confidence Interval for Mj

i i : i i I

1050 1060 1070 1080 1090 1100

95% Confidence Interval for Median

Variable: C3I IPC

Number of Writes
Anderson-Darling NormalityTest

A-Squarect 3.439

P-Value: 0.000

Mean 1077.30

StDev 63.03
Variance 3972.98

Skewness 3.09582

Kurtosis 10.6610

N 30

Mnimum 1022.00

IstCuartile 1052.75

Median 1062.50

3rdQjartile 1083.00

Maxmum 1358.00

95% Confidence Interval for Mj

1053.76 1100.84

95% Confidence Interval for Sigma

5020 84.73

95% Confidence Interval for Median

1055.00 1078.77

Descriptive Statistics

95% Confidence Interval for Mj

58000 59000 50000 61000

95-
i Confidence Interval for Median

Variable: FPIPC
Number of Writes

Anderson-Darling NormalityTest

ASquarect 0.353

P-Value: 0.443

Mean 593724
StDev 3059.6

Variance 9361193
Skewness -1.4E01

Kurtosis -3.8E-01

N 30

Mnimum 52426.0

IstCuartile 57507.0

Median 58784.0

3rd Cuartile 61376.0

Ma*mum 65144.0

95% Confidence Interval for Mj

58229.9 60514.9

95% Confidence Interval for Sigma

2436.7 4113.1

95% Confidence Interval for Median

57742.9 60958.0

142

Descriptive Statistics

1 55CC00 1 600000 1 6500CC 1 700000 1 75CO00 1 800000 185O00C

95% Confidence Interval for Mi

1510000 1620000 1630000 1640000 1650000 1660000

95% Confidence Intend for VfecSan

Variable: C3I

Network Bytes Written

Anderson-Darling NormalityTest

ASquarect 1.049

P-Value: 0.008

Mean 1634463

StDev 64789
\/ariance 4.20E-+09

Skewness 1.32862

Kurtosis 2.16355

N 30

Mnimum 1541245
IstCuartile 1598278

Median 1621830
3rd Cuartile 1661383

Maamum 1851427

95% Confidence Interval for Mj

1610270 1658656

95% Confidence Interval for 9gma
51598 87097

95% Confidence Interval for Median

1611896 1637375

Descriptive Statistics

950000 990C0C 1030000 1070000 111CC00

95% Confidence interval for fvb

f

1

I

01500C '025000 1035000 1G45000

Variable: FP Network

Bytes Written

Anderson-Darling NormalityTest

ASquarect 0.709

P-Value: 0.057

Mean 1029378

StDev 34171
variance 1.17E+09

Skewness 0273428
Kurtosis 0.365661

N 30

Mnimum 955221

IstCuartile 1011185

Median 1025848
3rd Cuartile 1046070

Mwmum 1108747

95% Confidence Irterval for Median

95% Confidence Interval for Mj

1016618 1042137

95% Confidence interval for Sigma

27214 45936

95% Confidence Interval for Median

1013469 1038536

143

Descriptive Statistics

1 900000 1 95000020I)COD2C600002100CCC21500002200000

95% Confidence Interval for Mj

2028000 2038CC0 2048000 2O58CC0 2069000 2078000 2069000

95% Confidence interval for Msdian

Variable: Detect

Network Bytes Written

Anderson-Darling NormalityTest

ASquared: 0.982

P-Vaiue: 0.012

rvban 2057529
StDev 68161
Variance 4.65E-f09

Skewness -2.3E-01

Kurtosis 122879
N 30

Mnimum 1885618
IstCuartile 2031778
Median 2056892
3rdQjartile 2090429
Maamum P2?2cun

95% Confidence Interval for Mj

2032078 2082981

95% Confidence Interval for Sigma

54284 91630

95% Confidence Interval for Median

2038369 2074922

Descriptive Statistics

145000 155000 165000 175000

95% Confidence Interval for Wb

I I ! I I ! I

152000 153000 154000 15500C 156000 157000 158000 159000

95% Confidence interval for fvfedian

Variable: C3I

Network Number of

Writes
Anderson-Darling NormalityTest

ASquarect 0.733

P-Value: 0.050

Mean 155957

StDev 7568
\&riance 57276532
Skewness 1.41476

Kurtosis 273825
N 30

Mnimum 145958

IstCuartile 150646

Median 154280
3rdQjarrjle 159340

Me*mum 182493

95% Confidence Interval for Mj

153131 158783

95% Confidence Interval for Sigma

6027 10174

95% Confidence Interval for Median

152574 158076

144

Descriptive Statistics

95° o Confidence internal for Vlj

740.6 741.1 741

5

7421

Variable: FP Network

Number of Writes

Axterson-Darling NormalityTest

ASquared: 0.561

P-Value: 0.134

Msan 741.300

StDev 1.705

Variance 290690
Skewness 0.150117

Kurtosis -72E-01

N 30

Mnimum 738.000

IstCuartile 740.000

fvedian 741.000
3rdQjartile 743.000

Maximum 745.000

95% Confidence Interval for Mj

740.663 741.937

95% Confidence Interval for Sgma

1.358 2292

95% Confidence intervai for Ivedian
95% Confidence Interval for N/edian

741.000 742000

Descriptive Statistics

95% Confidence intervai for VL

DOD.D 586.5
J

587.5 588.5 589.5 590.5 591.5 592.5

Variable: Detect

Network Number of

Writes
Axterson-Darling NormalityTest

ASquared: 1265
P-Value: 0.002

IVean 588.933

StDev 8.034

Variance 64.5471

Skewness -3.3E-01

Kurtosis 1.49254

N 30

Mnimum 568.000

IstCuartile 586.000

fvfedian 589.000
3rdQuarrjle 592250
Maximum 608.000

95% Confidence interval for Vediar.

95% Confidence Interval for Mj

585.933 591.933

95% Confidence Interval for Sgma

6.398 10.800

95% Confidence Interval for Ivedian

587.000 590.771

145

Descriptive Statistics

95% Confidence Interval for Mj

I I I I I I ! I I !

20.2 20.3 20.4 20.5 20.5 20.7 20.8 20.9 21.0 21.1

I ! I ! I ! I I I :

Variable: C3I

Cunulative CPU Times

(c3i.pstat)
Anderson-Darling NormalityTest

ASquared:
- P-Value:

0200
0.871

rVean

SOev
Variance

Skewness
Kurtosis

N

20.7333

0.8770
0.769195

0.324038

-2.3E-01

30

Mnimum
IstCiiartile

Ivtedian

3rdCuartile

Maxmum

18.9700

20.1500

20.7100
21.3925

22.8600

95% Confidence Interval fa Mj

20.4058 21.0608

95% Confidence Interval for (Vedian

95% Confidence Interval for Sigma

0.6985 1.1790

95% Confidence Interval fa Madian

202491 21.0440

Descriptive Statistics

95% Confidence Interval for Mj

19.85 19.95 2005 2015 20.25 20.35 2045 20.55 2065 2075

95" o Confidence Interval for N/bdian

Variable: FP
Cumulative CPU Times

(fp.pstat)

Anderson-Darling NormalityTest

ASquarecfc 0.308

P-Value: 0.541

Maan 20.3123

SlDev 0.9480
Variance 0.898646

Skewness 0232861
Kurtosis 1.10592

N 30

Mnimum 17.9300

IstCuartile 19.7825

Madian 20.3450

3rdQjartile 20.8250

Maxmum 23.0200

95% Confidence Interval for Mj

19.9584 20.6663

95% Confidence Interval for Sigma

0.7550 12744

95% Confidence Interval for Madian

19.8800 20.5931

146

Descriptive Statistics

95% Confidence interval for Mj
'
'

21.5 22 22.5

Variable: Detect

Cumulative CPU
Times (detect, pstat)

Anderson-Darling NormalityTest

ASquared: 0.575

P-Value: 0.123

N/fean 221503
StDev 1.1457

variance 1.31253

Skewness 0.668464

Kurtosis -26E-02

N 30

Mnimum 20.0300

IstCuartile 21.3250

Median 22.0000

3rd Cuartjle 22.9225

Maxmum 25.1600

95% Confidence interval for IVedsan

95% Confidence Interval for Mj

21.7225 22.5781

95% Confidence Interval for Sigma

0.9124 1.5401

95% Confidence Interval for fvtedian

21.3869 22.4326

Descriptive Statistics

2952 2953 2954 2955

I !

95°' i Confidence Interval for Mj

i

'y
i

53.0 29535 295

!

Variable: C3I Physical

Pages in Memory
Anderson-Darling NormalityTest

A-Squared 2113
P-Value: 0.000

tVfean 2953.47

StDev 0.78

variance 0.602299

Skewness -1.1E-01

Kurtosis -5.6E-01

N 30

Mnimum 2952.00

IstQjartJIe 2953.00

fvtedian 2953.50
3rdCuartile 2954.00

Mwrnum 2955.00

95% Confidence interval for Median

95% Confidence Interval for Mj

2953.18 2953.76

95% Confidence Interval for Sgma
0.62 1.04

95% Confidence Interval for Median

2953.00 2954.00

147

Descriptive Statistics

B 1 ~Kh
23615 23620 23325 23630 23635 23640

95% Confidence interval for Mj

23624 23626 23628 23630

95% Confidence Interval for Median

Variable: C3I Pages in

Virtual Memory
Anderson-Darling NormalityTest

ASquared: 2.113

P-Value: 0.000

Mean 23627.7

StDev 6.2

Variance 38.5471

Skewness -1.1E-01

Kurtosis -5.6E-01

N 30

Mnimum 23616.0

IstQuartjle 23524.0

Median 23628.0
3rdQjartile 23632.0

Maxmum 23540.0

95% Confidence Interval for Mj

23625.4 23530.1

95% Confidence Interval for Sigma

4.9 8.3

95% Confidence Interval for Median

23624.0 23532.0

Descriptive Statistics

17935

!

17945 17955

! i

17965 17975

I

17985

1

95% Confidence interval for Mj

11

1

17970

i

17930

I

'965

I

Variable: C3I Pages in

Resident Set

Anderson-Darling NormalityTest

A-Squarect 1.148

P-Value: 0.004

Mean 17964.8

StDev 11.8

Variance 139.476

Skewness -7.5E-01

Kurtosis 0.361664

N 30

Mnimum 17936.0

IstCuartle 17960.0

Median 17968.0

3rdQjartile 17976.0

Maxmum 17984.0

95% Confidence Interval for Mj

17960.4 179692

95% Confidence Interval for Sigma

9.4 15.9

95% Confidence Interval for Median
95% Confidence Interval for Median

17960.0 17968.0

148

Descriptive Statistics

Variable: FP Pages in

Resident Set

AxJerson-Darling NormalityTest

ASquared: 11.090

P-Value: 0.000

7904 7906

! I

79C8 7910 7912

95% Confidence Interval for MU

79112 7911.7 79122

95% Confidence Interval for Indian

Ivtean 7911.73

StDev 1.46

Variance 2.13333

Skewness ^.94167
Kurtosis 23.1967

N 30

Mnimum 7904.00

IstCuarrjIe 7912.00

rVtedan 7912.00

3rdQjartjle 7912.00

rvaxmum 7912.00

95% Confidence Interval fa Mj

7911.19 791Z28

95% Confidence Interval fa Sgma
1.16 1.96

95% Confidence Interval fa Ivfedian

7912.00 7912.00

149

150

APPENDIX I. MSHN WRAPPER OUTPUT: DETERMINISTIC TRIALS

Note: Only data that generated a distribution is displayed.

Descriptive Statistics

95% Confidence Interval for Mi

Variable: C3I User

CPU Time

(Deterministic)

ATderson-Darling NormalityTest

^Squared:

P-Value:

1.433

0.001

Mean
SDev
Variance

Skewness
Kurtosis

N

34.3613

0.6598

0.435329

1.18541

0.564623

30

Mnimum
IstCuartile

Median
3rdCuartile

Maxmum

33.4900

33.9200

34.1750
34.5775

36.0600

33.9

I

34.3

!

34.4

I

34.5

I

i

34.0

i

34.1 34.2 34.6

I

i !

95% Confidence Interval fa Mj

34.1150 34.6077

95% Confidence Interval for Sigma

0.5255 0.8870

Q£W_ ("VmfiHonro Internal frv K/hrfian

Descriptive Statistics

95% Confidence Interval for Mj

i

4.31

!

4.36

1

4.41

Variable: FP System

CPU Time

(Deterministic)
Anderson-Darling NormalityTest

A-Squared:

P-Value:

0.380

0.381

Mean
StDev
Variance

Skewness
Kurtosis

N

4.35667

0.11989
1.44E-02

0.389254

-3.3E-01

30

Mnimum
IstCuartile

Median
3rdCuartile

Maxmum

4.12000

427500
4.35000
4.41500

4.65000

95% Confidence Interval for Mj

4.31190 4.40144

95% Confidence Interval for Sigma

0.09548 0.16118

95% Confidence interval for Median
95% Confidence Interval for Median

4.31000 4.39543

151

Descriptive Statistics

95% Confidence interval for Mj

10.95

I

11.05 11.25 11.35

95% Confidence Interval for fvfedian

Variable: Detect

System CPU Time

(Deterministic)

AxtersorvDarling NormalityTest

A-Squared: 0.407

P^Value: 0.328

N/fean 11.1957

StDev 0.3933
Variance 0.154687

Skewness 0.480020

Kurtosis -5.8E-01

N 30

Mnimum 10.6500

IstCuartile 10.8675

Ivtedian 112200
3rdCiJai1ile 11.3875

Maxmum 12.0600

95% Confidence Interval for Mj

11.0488 11.3425

95% Confidence Interval for Sigma

0.3132 0.5287

95% Confidence Interval for Median

10.9483 11.3386

Descriptive Statistics

4.6 4.8 5.0 52 5.4

95% Confidence Interval for Mj

4.94

I

5.24

95% Confidence interval for Ivedian

Variable: C3I System

CPU Time

(Deterministic)
Anderson-Darling NormalityTest

ASquared: 0.393

P-Value: 0.356

Msan 5.07300

StDev 021459
variance 4.60E-02

Skewness -3.0E-01

Kurtosis -82E-01

N 30

Mnimum 4.64000

IstCuartile 4.89750

MscOan 5.11000

3rdCuartile 523500
Maxmum 5.46000

95% Confidence Interval for Mj

4.99287 5.15313

95% Confidence Interval for Sigma

0.17090 028848

95% Confidence Interval for Msdian

4.96000 521314

152

Descriptive Statistics

95% Confidence interval for Mj

4.31 4.36 4.41

I

95% Confidence Interval for Mxian

Variable: FP System

CPU Time

(Deterministic)

Anderson-Darling NormalityTest

ASquaredt 0.380

P-value: 0.381

Mean 4.35667

StDev 0.11989

variance 1.44E-02

Skewness 0.389254

Kurtosis -3.3E-01

N 30

Mnimum 4.12000

IstCuartile 427500
Median 4.35000

3rdQLiartile 4.41500

Maxmum 4.65000

95% Confidence Interval for Mj

4.31190 4.40144

95% Confidence Interval for Sigma

0.09548 0.16118

95% Confidence Interval for Median

4.31000 4.39543

Descriptive Statistics

10.7 11.1 11.5 11.9

BBBHjn|

95% Confidence interval for Mj

10.95 11.(5 11.15 1125 1

Variable: Detect

System CPU Time

(Deterministic)

ATderson-Darling NormalityTest

A-Squared: 0.407

P-Value: 0.328

Mean 11.1957

StDev 0.3933
variance 0.154687

Skewness 0.480020

Kurtosis -5.8E-01

N 30

Mnimum 10.6500

IstCuartile 10.8675

Median 112200
3rdQjartile 11.3875

Maxmum 12.0600

95% Confidence interval for Median

95% Confidence Interval for Mi

11.0488 11.3425

95% Confidence Interval for Sgma
0.3132 0.5287

95% Confidence Interval for Median

10.9483 11.3386

153

Descriptive Statistics

|\

1
1

4.8

I

139.8

1

1 i

140.8 141.8

: i

I i

1428 143.8

i I

14

95% Confidence interval for Mi

i

140.5 141 141.5

95% Confidence Interval 'orh/fedian

Descriptive Statistics

123 124 125 126 127 128

95% Confidence Interval for Mj

124.0 124.5 125.0

95% Confidence Interval for Median

Variable: C3I Wall

Clock Time

(Deterministic)
Anderson-Darling NormalityTest

A-Squarect 1.104

. P-value: 0.006

Mean
StDev
variance

Skewness
Kurtosis

N

141.020

1.107

122540
1.45440

230142
30

Mnimum
IstQjartile

Median
3rd Qjartile

Msoirnum

139.770

140.099

140.840

141.416

144.761

95% Confidence Interval for Mj

140.606 141.433

95% Confidence Interval for Sigma

0.882 1.488

95% Confidence Interval for Median

140247 141289

*s

Variable: FPWall

Clock Time

(Deterministic)
Anderson-Darling NormalityTest

ASquarech 1.050

P-Value: 0.008

Mean
StDev
variance

Skewness
Kurtosis

N

124.497

1.108

122803
1.35971

1.89990

30

Mnimum
IstQjartile

Median
3rd Qjartile

Maximum

123244
123.584

124.309
124.885

128.139

95% Confidence Interval for Mj

124.083 124.911

95% Confidence Interval for Sgma

0.883 1.490

95% Confidence Interval for Median

123.698 124.746

154

Descriptive Statistics

14G.G

139.5

I I

140.5 141.5

! I

142.5 143..

I I

5 14

!

95% Confidence Interval for Mj

\2 :|

140.5 141 ,C

1 !

!

i

Variable: Detect Wall

Clock Time

(Deterministic)

AxJerson-Darling NormalityTest

A-Squaredr. 1.120

P-Value: 0.005

Mean
StDev
Variance

Skewness
Kurtosis

N

140.808

1.130

127736
1.43378

212833
30

Mnimum
IstCliartile

Median
3rd Cliartile

Maxmum

139.579

139.885

140.600

141.175

144.573

95% Confidence Interval for Mj

140.386 141230

95% Confidence Interval for Sgma
0.900 1.519

95% Confidence Interval for K/fedian
95% Confidence Interval for Median

140.085 141.046

Descriptive Statistics

38.0 38.5 39.0 39.5 40.0 40.5 41.0

95% Confidence interval fa Mj

3.0 39.1 39.2 39.3 39.4 3.5 39.6

95% Confidence Interval for Median

Variable: C3I

Cumdative CPU Time

(c3i.pstat)

Anderson-Darling NormalityTest

A-Squared:

P-Value:

2236
0.000

Mean
StDev
Variance

Skewness
Kurtosis

N

39.3937

0.7044

0.496127

1.07294

0.315679

30

Mnimum
IstCliartile

Median
3rd Qjartile

Maximum

38.1800

38.9925

39.1150

39.6700

41.1200

95% Confidence Interval for Mj

39.1307 39.6567

95% Confidence Interval for Sgma

0.5610 0.9469

95%Confidence Interval for Median

39.0100 39.3400

155

Descriptive Statistics

95% Confidence interval for Mi

24.4 24.9 25.4

Variable: FP
Cumulative CPU Time

(fp.pstat)

Aiderson-Darling NormalityTest

ASquared: 5.549

P-VaJue:

M^an
StDev
Variance

Skewness
Kurtosis

N

Mnimum
IstCuartile

Median
3rdQjartile

Maxmum

0.000

24.8813

12281
1.50816

429112
18.8038

30

242200
24.4250

24.5400
24.8925

31.0900

95% Confidence Interval for Median

95% Confidence Interval for Mi

24.4228 25.3399

95%Confidence Interval forSgma
0.9780 1.6509

95% Confidence Interval for Median

24.4423 24.7577

Descriptive Statistics

95% Confidence Inter\al for Mi

I

jCt.il JC

i

381 13 3&4

Variable: Detect

Cumulative CPU Time

(detect, pstat)
Anderson-Darling NormalityTest

ASquared:

P-Value:

1.014

0.010

bfean

StDev
variance

Skewness
Kurtosis

N

382990
0.3719

0.138306

0.907432

-1.1E01

30

Mnimum
IstCuartile

Median
3rdQjartile

Mromum

37.7900

38.0375

38.1800
38.5175

39.1700

95% Confidence Interval for Mi

38.1601 38.4379

95% Confidence Interval for Sigma

02962 0.4999

95% Confidence interval for Median
95% Confidence Interval for Median

38.1014 38.3631

156

APPENDIX J. PAPA1 REPORT

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

! Time
El SSPK
! (Seconds)
(Deg)

Target
PKCum Route

ID
PK

Engager

ID

Range

(n)

A 2

(Deg)

80.00

80.00 80.00

80.00

80.00

iO.OO

80.00 96.00

50.00

50.00

50.00

80.00

80.00

50.00

50.00

50.00

80.00

80.00

80.00

50.00

80.00

80.00

iO.OO

50.00

80.00

104.96 Missile 28767
80.00 80.00

105.52 Missile 28766
80.00

106.89 Missile 28768
80.00 80.00

107.83 Missile 28767
96.00 9 6JD0

__ _
108.03 Miss

i

fi -28766
96.00 96.00

109.74 Missile 28768
96.00

110.42 Hostile_AA_Ftr_04
50.00 50.00

118.45 Hostile_AA_Ftr_04
75.00 75.00

119.54 Hostile_AA_Ftr_06
50.00 50.00

120.30 MissiXe
:

..28767

99 20 99.20
121 18 Missile .2,8768

99 20 99.20
125 23 Hostile _AA_Ftr_ 05

50 00 50.00
127 88 Hostile AA Ftr 06

75 00 75.00
128 3 3 Hostile. AA Ftr 04

87 50 87.50
132 4 Missile 28773
80 00 80.00

132 48 Missile 28774
80 00 80.00

134 01 Missile 28775
80 00 80.00

134 47 Hostile._AA_Ftr__07
50 00 50.0050 00 50.00

135 11 Missile "55773

96 00 96.00
135 19 Missile 28774
96 00 96.00

136 82 Missile 28775
96 00 96.00

142 9 3 Hostile AA Ftr 07

75 00 75.00
147 77 Missile "28775

99 2 99.20

Asset_Def_SAM_03

Asset_Def_SAM_01

Asset_Def_SAM_01

Asset_Def_SAM_03

As set_De f_SAM_0

1

As set_De f_SAM_ 1

Point_Def_SAM_01/03

Point_Def_SAM_01/03

Point_Def_SAM_01/03

Asset_Def_SAM_03

Asset_Def_SAM_03

Po int_De f_SAM_0 1/03

Point_Def_SAM_01/03

Po int_De f_SAM_01/03

Asset_Def_SAM_01

Asset_Def_SAM_03

Asset_Def_SAM_01

Point_Def_SAM_01/03

Asset_Def_SAM_01

Asset_Def_SAM_03

Asset_Def_SAM_01

Point_Def_SAM_01/03

Asset Def SAM 03

17272 30.60

18410 12.98

19006 8.33

15669 32.85

16819 14.03

17400 9.64

4698 7.43

2621 15.19

3912 357.86

8526 51.85

7746 47.40

4161 76.62

2087 354.08

2156 157.01

18410 12.98

15669 32.85

19006 8.33

3823 9.04

16819 14.03

14106 35.50

17400 9.64

2113 31.15

7746 47.40

30.95

23.34

24.25

31.13

22.54

23.61

24.64

48.13

29.11

24.06

25.74

27.29

65.24

64.40

23.34

31.13

24.25

30.77

22.54

30.98

23.61

67.29

25.74

157

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time Target
SSPK PKCum Route

(Seconds) ID

Deg) PK

Engager

ID

Range

(m)

Az

(Deg)

50.00

50.00

50.00

42.16

40.93

40.93

80.00

80.00

80.00

80.00

80.00

50.00

50.00

80.00

Point_Def_SAM_01/01

Point_De f_SAM_0 1/01

Point_Def_SAM_01/01

155.10 Red_AG_Ftr_01/04
50.00 50.00
155.53 Red_AG_Ftr_01/03
50.00 50.00

156.97 Red_AG_Ftr_01/01
50.00 50.00

158.05 Hostile_AA_Ftr_02/01 Point_Def_SAM_01/03
42.16 42.16

158.13 Hostile_AA_Ftr_02/03 Point_Def_SAM_01/03
40.93 40.93
158.13 Hostile_AA_Ftr_02/04 Point_Def_SAM_01/03
40.93 40.93

161.66 Missile 28777
80.00 80.00

162.51 Missile 28776
80.00 80.00

163.89 Missile 28778
80.00 80.00

164.56 Missile 28777
96.00 96 00

165.03 Missile 28776
96.00 ~96v00

165.70 Red_AG_Ftr_02/03
50.00 50.00

166.62 Red_AG_Ftr_01/04
75.00 75.00
166.74 Missile 28778
96.00 96.00

As s e t_De f_SAM_0 3

Asset_Def_SAM_01

As s et_De f_SAM_0

1

Asset_Def_SAM_03

Asset_Def_SAM_01

Point_De f_SAM_0 1/01

Point_Def_SAM_01/01

Asset_Def_SAM 01

70.00

70.00

50.00

50.00

50.00

45.00

45.00

80.00

80.00

Point_Def_SAM_01/01

AA_Ftr_04/01

AA_Ftr 04/02

166.97 Red_AG_Ftr_01/03
50.00 75.00 75.00

169.44 Hostile_AA_Ftr_05
85.00 85.00
170.07 Hostile_AA_Ftr_05
95.50 95.50

170.41 Hostile_AA_Ftr_02/01 Point_Def_SAM_01/03
71.08 71.08

170.53 Hostile_AA_Ftr_02/03 Point_Def_SAM_01/03
70.47 70.47
170.53 Hostile_AA_Ftr_02/04 Point_Def_SAM_01/03
70.47 70.47

171.83 AA_Ftr_04/01
45.00 45.00
173.49 AA_Ftr_04/01
69.75 48.09

176.86 Missile 28777
99.20 99.20

177.92 Missile 28778
99.20 99.20

"

Hostile_AA_Ftr_05

Hostile_AA_Ftr_04

Asset_Def_SAM_03

Asset_Def_SAM_03

3851 115.99 0.43

4210 113.46 0.82

5636 115.14 0.40

6901 37.19 15.52

6980 42.32 16.20

6980 42.32 16.20

17272 30.60 30.95

18410 12.98 23.34

19006 8.33 24.25

15669 32.85 31.13

16819 14.03 22.54

4513 120.74 0.98

5215 137.52 1.42

17400 9.64 23.61

5484 134.33 1.72

9129 324.81 354.23

9305 325.33 352.77

4576 38.66 23.85

4693 46.71 24.55

4693 46.71 24.55

9394 133.61 3.72

7910 138.02 354.45

9782 46.69 27.23

7746 47.40 25.74

158

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

El

Time
SSPK

(Seconds)
Deg)

Target
PKCum Route

ID
PK

Engager

ID

Range

(m)

Az

(Deg)

178.41 AA_Ftr_04/02
45.00 45.00 45.00

178.62 Red_AG_Ftr_01/04
40.75 85.19 85.19

178.88 Hostile_AA_Ftr_02/02
39.78 50.00 50.00 50.00

180.18 AA_Ftr_04/01
349.07 45.00 83.36 53.93

183.18 Red_AG_Ftr_02/03
1.31 43.46 71.73 71.73

183.32 AA_Ftr_04/02
346.44 45.00 69.75 51.19

187.82 AA_Ftr_04/01
354.04 45.00 90.85 59.12

191.44 AA_Ftr_04/02
356.55 45.00 83.36 56.68

192.35 Missile 28785
31.13 80.00 80.00 80.00

192.48 Missile 28784
23.34 80.00 80.00 80.00

193.86 Missile 28786
24.25 80.00 _80._00 80J30

195.01 Missile 28784
22.54 80.00 96.00 96:00

195.10 Missile 28785
30.98 80.00 Te . 00 " 96: 00

195.90 Red_CM_01~
347.20 70.00 70.00 70.00

196.91 Missile 28786
23.61 80.00 96.00 96.00

197.51 Hostile_AA_Ftr_04
344.55 70.00 96.25 96.25

198.57 Hostile_AA_Ftr_04
349.52 58.93 98.46 98.46

205.73 AA_Ftr_05/02
358.92 45.00 _45.00 45.00

208.50 Missile 28786
25.74 80.00 99.20 99.2080.00 99.20

209.11 Hostile_AA_Ftr_03/03
16.56 30.61 30.61 30.61

209.11 Hostile_AA_Ftr_03/04
16.56 30.61 30.61 30.61

2 09.23 Red_CM_01
320.89 70.00 91.00 91.00

211.48 Hostile_AA_Ftr_07
359.50 70.00 92.50 82.15

217.46 Red_CM_03
342.16 70.00 70.00 70.00

217.53 Red_CM_04
331.46 70.00 70.00 70.00

Hostile_AA_Ftr_04

Point_Def_SAM_01/01

Point_Def_SAM_01/03

Hos t i 1e_AA_F tr_0

6

Point_Def_SAM_01/01

Hostile_AA_Ftr_06

Hostile_AA_Ftr_07

Hostile_AA_Ftr_07

As s et_De f_SAM_0 3

Asset_Def_SAM_01

As s et_De f_SAM_0

1

Asset_Def_SAM_01

As s e t_De f_SAM_0 3

AA_Ftr_03/02

Asset_Def_SAM_01

AA_Ftr_03/01

AA_Ftr_05/01

Hostile_AA_Ftr_06

Asset_Def_SAM_03

Point_Def_SAM_01/02

Point_Def_SAM_01/02

AA_Ftr_03/01

AA_Ftr_04/01

AA_Ftr_03/02

AA_Ftr_03/02

5762 131.28 350.69

6992 149.19 0.94

3052 27.07

7440 124.83

6818 144.39

6232 130.48

9445 129.68

9307 137.65

15669 32.85

18410 12.98

19006 8.33

16819 14.03

14106 35.50

9469 349.78

17400 9.64

10731 17.30

17463 291.82

6192 101.87

7746 47.40

7640 287.85

7640 287.85

3150 328.00

7529 356.22

6644 298.96

4367 287.11

159

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time Target Engager Range Az
El SSPK PKCum Route

(Seconds) ID ID (m) (Deg)

Deg) PK

220.41 Hostile_AA_Ftr_06 AA_Ftr_05/01 7929 32.30
341.30 70.00 92.50 92.50

220.86 AA_Ftr_03/01 Hostile_AA_Ftr_04 6741 202.05
14.29 45.00 45.00 45.00

221.25 Missile 28787 Asset_Def_SAM_01 20044 12.04
23.79 80.00 80.00 80.00

221.43 AA_Ftr_04/01 Hostile_AA_Ftr_05 6510 61.27
359.08 45.00 94.97 59.94

221.76 Missile 28788 Asset_Def_SAM_03 17272 30.60
30.95 80.00 80.00 80.00

222.96 Missile 28789 Asset_Def_SAM_01 19006 8.33
24.25 80.00 80.00 80.00

223.42 Hostile_AA_Ftr_03/03 Point_Def_SAM_01/02 7850 257.65
16.11 27.34 49.58 49.58

223.42 Hostile_AA_Ftr_03/04 Point_Def_SAM_01/02 7850 257.65
16.11 27.34 49.58 49.58

224.18 AA_Ftr_04/02 Hostile_AA_Ftr_05 9667 51.33
359.71 45.00 90.85 57.56

224.28 Missile 28787 Asset_Def_SAM_01 18410 12.98
23.34 80.00 96.00 96.00

224.31 Hostile_SAM_Killer_01 Asset_Def_SAM_03 44459 357.04
1.10 80.00 80.00 80.00

224.67 Missile 28788 Asset_Def_SAM_03 15669 32.85
31.13 80.00 J_5-00 96.00

225.85 Missile '28789 Asset_Def_SAM_01 17400 9.64
23.61 80.00 96. 00 96.00

225.90 Red_CM_Q2 _'_ AA_Ftr_03/02 7669 267.80
344.93 70.00 70.00 70.00

226.13 AA_Ftr_04/01 Hostile_AA_Ftr_03 /01 9211 171.94
348.90 45.00 97.23 77.97

227.17 AA_Ftr_04/01 Hostile_AA_Ftr_03/02 9391 170.14
348.47 45.00 98.48 87.88

227.27 AA_Ftr_04/01 Hostile_AA_Ftr_03/03 9315 177.02
348.40 45.00 99.16 90.63

227.27 AA_Ftr_04/01 Hostile_AA_Ftr_03/04 9315 177.02
348.40 45.00 99.54 92.76

231.64 Hostile_AA_Ftr_05 AA_Ftr_05/01 12238 298.84
344.61 70.00 98.65 98.65

235.47 Hostile_AA_Ftr_04 AA_Ftr_03/02 5829 9.17
336.67 70.00 99.54 99.54

235.48 Missile 28787 Asset_Def_SAM_03 8617 46.41
9 9.20 99.20

237.93 Missile 28788 Asset_Def_SAM_03 8526 51.85
24.06 80.00 5 9.20 99:20

238.82 Hostile_AA_Ftr_07 AA_Ftr_05/01 12391 16.61
345.15 70.00 97.75 94.65

244.37 Hostile_AA_Ftr_05 AA_Ftr_04/02 2989 142.77
358.55 70.00 99.60 99.05

160

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time Target Engager Range Az
El SSPK PKCum Route

(Seconds) ID ID (m) (Deg)

Deg) PK

245.52 AA_Ftr_03/01 Hostile_AA_Ftr_02 /01 8986 217.36
350.12 45.00 69.75 52.16

246.50 AA_Ftr_03/01 Hostile_AA_Ftr_02 /02 8399 219.26
348.39 45.00 83.36 62.92

246.75 AA_Ftr_03/01 Hostile_AA_Ftr_02 /03 8311 226.29
348.25 45.00 90.85 67.85

246.75 AA_Ftr_03/01 Hostile_AA_Ftr_02 /04 8311 226.29
348.25 45.00 94.97 72.12

250.74 Red_CM_01 Escort_02/01 10273 8.81
294.46 70.00 97.30 97.30

251.27 Red_CM_01 Escort_02/02 10763 5.72
298.60 70.00 99.19 99.19

256.51 Hostile_AA_Ftr_07 AA_Ftr_05/02 3634 58.93
341.68 70.00 99.33 96.71

256.92 Hostile_AA_Ftr_06 AA_Ftr_05/02 14751 169.76
355.94 64.32 97.32 95.15

262.99 Hostile_AA_Ftr_03/02 AA_Ftr_04/01 7858 100.21
7.76 70.00 70.00 70.00

264.00 Hostile_SAM_Killer_01 Asset_Def_SAM_03 35534 355.11
1.45 80.00 96.00 96.00

265.29 Red_AG_Ftr_03 Asset_Def_SAM_03 46934 11.59
0.61 80.00 80.00 80.00

268.59 Hostile_AA_Ftr_05 AA_Ftr_04/01 6558 44.80
359.92 70.00 99.88 99.10

275.52 Red_AG_Ftr_01/04 AA_Ftr_05/01 4908 103.91
323.74 70.00 95.56 95.56

278.50 Hostile_AA_Ftr_03/01 AA_Ftr_04/01 6849 135.54
13.51 70.00 70.00 70.00

279.36 Red_AG_Ftr_02/04 AA_Ftr_05/01 3851 89.07
311.50 70.00 70.00 70.00

279.37 Red_CM_04 Escort_02/02 12471 270.30
312.51 70.00 91.00 91.00

279.95 Hostile_AA_Ftr_02/03 Asset_Def_SAM_03 51330 34.29
2.25 80.00 94.09 94.09

280.93 AA_Ftr_03/01 Hostile_AA_Ftr_04 2886 307.73
359.49 45.00 __ 97.23 _ 72.18

281.50 RedLCM_04
_

Escort_02/01 12573 266.47
313.65 70.00

"*' 97 '.' 3o"~ 97 . 30
281.76 Hostile_AA_Ftr_05 Point_Def_SAM_01/03 5796 85.56

1.10 50.00 99.94 99.55
282.45 Hostile_AA_Ftr_02/04 Asset_Def_SAM_03 51450 35.42

2.58 80.00 94.09 94.09
282.56 AA_Ftr_03/02 Hostile_AA_Ftr_02 /01 11582 121.10

6.41 45.00 45.00 45.00
282.78 Hostile_AA_Ftr_04 AA_Ftr_03/01 2316 115.20

2.04 70.00 99.86 99.63
283.45 Red_AG_Ftr_02/03 AA_Ftr_05/01 3644 95.06

309.17 70.00 91.52 91.52

161

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

El

Time
SSPK

! (Seconds)
(Deg)

Target
PKCum Route

ID
PK

Engager

ID

Range

(m)

Az

(Deg)

2 88.76 AA_Ftr_05/02
279.88 45.00 69.75 69.75

288.76 AA_Ftr_05/02
279.88 45.00 83.36 83.36

288.85 AA_Ftr_05/02
281.41 45.00 90.85 90.85

288.88 AA_Ftr_05/02
45.00 94.97 94.97

289.93 AA_Ftr_04/01
1.26 45.00 99.75 93.74

293.99 Red_AG_Ftr_01/03
308.40 70.00 92.50 92.50

294.00 Hostile_SAM_Killer_01
1.86 80.00 99.20 99.20

294.75 Red_CM_01
315.80 66.58 99.73 99.73

294.98 AA_Ftr_03/02
7.39 40.35 67.19_ 45.08

2 9 5.35 Red_CMl01 _ ___
316.27 65.14 99."91 99^91

296.63 AA_Ftr_04/01
337.79 45.00 99.86 95.16

296.63 AA_Ftr_04/01
337.79 45.00 99.92 96.26

302.31 Hostile_AA_Ftr_03/01
359.61 70.00 91.00 78.91

3 06.72 Red_CM_03
319.24 70.00 91.00 91.00

310.89 AA_Ftr_04/01
0.28 45.00 99.96 96.26

311.38 AA_Ftr_05/02
357.49 45.00 97.23 95.04

311.48 Red_CM_03
322.68 70.00 97.30 97.30

318.42 Hostile_SAM_Killer_01
1.93 80.00 99.84 99.84

319.42 AA_Ftr_04/02
359.57 45.00 94.97 57.64

322.90 Hostile_AA_Ftr_04
0.64 70.00 99.96 99.70

32 9.11 AA_Ftr_04/02
359.63 45.00 97.23 63.36

330.06 AA_Ftr_04/01
1.68 45.00 99.98 96.27

338.26 AA_Ftr_04/02
0.10 45.00 98.48 63.43

338.50 AA_Ftr_03/02
16.57 45.00 81.96 45.19

Hostile_AA_Ftr_01/03

Hostile_AA_Ftr_01/04

Hostile_AA_Ftr_01/01

Hostile_AA_Ftr_01/02

Hostile_AA_Ftr_03/02

AA_Ftr_05/01

As set_De f_SAM_0 3

Escort_01/01

Hostile_AA_Ftr_04

Escort_01/02

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/04

AA_Ftr_04/02

Escort_02/02

Hostile_AA_Ftr_05

Hostile_AA_Ftr_07

Escort_02/01

Asset_Def_SAM_03

Hostile_AA_Ftr_05

AA_Ftr_03/01

Hostile_AA_Ftr_03/02

Hostile_AA_Ftr_05

Hostile_AA_Ftr_05

Hostile AA Ftr 05

9409 240.06

9409 240.06

9355 249.17

9304 215.63 274.89

3888 338.83

3484 154.05

28714 352.81

14202 277.92

27740 120.67

14467 277.79

2385 309.85

2385 309.85

9587 250.55

15207 247.93

9931 186.14

6982 52.03

16297 247.88

28538 346.97

9892 152.86

1457 355.87

3623 49.02

5795 164.24

4373 190.15

8290 202.18

162

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time Target
El SSPK PKCum Route

(Seconds) ID
Deg) PK

Engager

ID

Range

(m)

Az

(Deg)

2.23

0.88

4.72

0.05

0.29

313.33

314.37

358.57

359.79

340.82
80.00

359.93
64.01

362.09
70.00

Hostile_AA_Ftr_02/03
98.82 98.82

350.18 AA_Ftr_04/02
45.00 99.16 66.90

Hostile_AA_Ftr_07
99.76 96.81

360.14 AA_Ftr_04/01
45.00 99.99 96.62

Hostile_AA_Ftr_04
99.99 99.76

367.31 Hostile_AA_Ftr_05
61.11 99.98 99.82

371.78 Hostile_AA_Ftr_05
64.90 99.99 99.94

372.00 Hostile_AA_Ftr_04
70.00 100.00 99.81

378.44 AA_Ftr_04/02
45.00 99.54 70.04

379.60 Hostile_AA_Ftr_04
356.09 70.00 100.00 99.84

382.38 Hostile_AA_Ftr_05
316.50 62.95 100.00 99.98

388.24 Hostile_AA_Ftr_03/01
359.95 70.00 97.30 79.41

393.26 Hostile_AA_Ftr_06
307.09 70.00 99.20 98.55

397.38 Hostile_AA_Ftr_03/02
91.00 70.71

401.65 Escort_01/01
45.00 45.00 45.00

4 02.2 6 Red_AG_Ftr_02/04
310.45 70.00 91.00 81.55

406.38 Red_AG_Ftr_01/04
292.47 70.00 98.67 98.67

409.42 Hostile_AA_Ftr_03/03
70.00 84.87 50.77

411.43 Red_AG_Ftr_02/03
70.00 97.46 97.46

413.60 Escort_02/01
45.00 45.00 45.00

415.29 AA_Ftr_04/01
45.00 99.99 96.94
415.61 Hostile_AA_Ftr_07

295.28 70.00 99.93 99.04

0.58 70.00

46.50

355.5!

298.53

58.35

5.83

Asset_Def_SAM_03

Hostile_AA_Ftr_03/01

AA_Ftr_05/02

Hostile_AA_Ftr_03/01

AA_Ftr_03/01

Escort_01/02

Escort_01/01

AA_Ftr_03/01

Hostile_AA_Ftr_03/01

AA_Ftr_03/01

Escort_02/01

AA_Ftr_04/01

Escort_01/02

AA_Ftr_04/01

Hostile_AA_Ftr_07

Escort_01/01

Escort_02/-01

AA_Ftr_04/01

Escort_02/01

Hostile_AA_Ftr_03/04

Hostile_AA_Ftr_03/01

Escort 01/02

52575 29.79

3968 211.66

12332 192.95

5420 110.99

4967 353.33

13602 25.90

13686 14.01

1977 28.19

7720 346.73

1280 63.87

14228 66.07

4554 277.89

11944 354.46

1854 223.45

8298 284.20

9201 273.30

10347 184.87

756 109.20

9308 160.77

9365 163.89

2155 46.88

6139 155.58

163

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time Target
El SSPK PKCum Route
! (Seconds) ID
(Deg) PK

Engager

ID

Range

(m)

Az

(Deg)

422.51 Hostile_AA_Ftr_03/03
0.09 80.00 96.97 90.15

423.97 AA_Ftr_03/01
359.97 45.00 98.48 72.20

424.88 Red_AG_Ftr_02/03
317.39 70.00 99.24 99.24

425.36 Hostile_AA_Ftr_03/02
0.09 80.00 98.20 94.14

427.24 Hostile_AA_Ftr_03/04
0.13 80.00 89.92 89.92

428.23 AA_Ftr_03/02
0.07 45.00 90.08 45.23

430.00 Hostile_AA_Ftr_03/04
329.52 70.00 96.97 96.97

434.25 AA_Ftr_03/01
357.92 45.00 99.16 72.22

435.44 Red_AG_Ftr_02/04
341.80 70.00 97.30 94.46

437.46 Red_AG_Ftr_02/04
307.41 70.00 99.19 98.34

441.65 Hostile_AA_Ftr_03/03
359.43 63.06 98.88 92.01

441.91 Escort_02/01
8.36 45.00 69.75 50.10

445.00 Red_AG_Ftr_02/02
358.90 57.62 57.62 57.62

448.24 Hostile_AA_Ftr_04
17.65 70.00 100.00 99.90

453.18 Hostile_SAM_Killer_01
0.70 80.00 99.97 99.97

453.29 Missile 28769
79.24 63.96 63.96 63.96

453.95 Missile 28770
79.61 64.91 64.91 64.91

455.00 Red_AG_Ftr_02/03
331.60 70.00 99.77 99.77

455.20 Red_AG_Ftr_01/03
0.42 80.00 98.50 98.50

458.46 AA_Ftr_04/01
2.07 45.00 100.00 97.22

460.30 Red_AG_Ftr_02/03
357.52 70.00 99.93 99.86

463.00 Red_AG_Ftr_02/01
358.79 70.00 70.00 70.00

465.01 AA_Ftr_04/02
359.80 45.00 99.75 71.12

468.56 Escort_02/02
8.69 45.00 45.00 45.00

Asset_Def_SAM_03

Hostile_AA_Ftr_04

Escort_01/02

Asset_Def_SAM_03

Asset_Def_SAM_03

Hostile_AA_Ftr_04

Escort_02/02

Hostile_AA_Ftr_04

Escort_01/02

Escort_02/02

AA_Ftr_04/02

Hostile_AA_Ftr_03/01

AA_Ftr_05/02

AA_Ftr_03/02

As set_De f_SAM_0 3

Area_De fense_SAM_0

1

Area_De fense_SAM_0

1

Escort_02/02

Asset_Def_SAM_03

Hostile_AA_Ftr_03/01

Escort_01/01

Escort_01/01

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/04

55904 50.35

5616 78.68

7819 219.78

56485 49.43

54597 49.05

5267 81.71

8387 19.07

2746 52.39

7995 262.00

4917 178.37

14709 147.83

3486 216.29

18772 224.91

741 333.65

58948 356.91

100625 12.64

101048 12.99

8024 153.03

39174 61.23

4842 97.24

4187 206.65

2554 241.98

4498 305.52

9297 200.91

164

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

El

Time
SSPK

(Seconds)
Deg)

Target
PKCum Route

ID
PK

Engager

ID

Range

(m)

Az

(Deg)

469.40 Red_AG_Ftr_01/02
70.00 70.00 70.00
471.98 Missile 28771
55.01 55.01 55.01

472.59 Missile 28772
56.04 56.04 56.04

473.87 Red_AG_Ftr_01/01
70.00 85.00 69.25

475.63 Red_AG_Ftr_02/01
64.09 89.23 70.95

477.42 Hostile_AA_Ftr_03/02
70.00 99.46 95.33

478.22 AA_Ftr_04/02
45.00 99.86 72.16

480.96 Escort_02/02
45.00 69.75 50.10
481.19 Escort_02/01

45.00 83.36 50.78
482.24 Red_AG_Ftr_02/01

70.00 96.77 91.29
492.14 Missile 28769
50.22 82.06 82.06

493.04 Missile 28770
58.39 85.40 85.40

4 9 3.24 Red_AG_Ftr_01/02
70.00 91.00 91..00

493.58 Missile 28769
69.00 94.44 94.44

494.50 Missile 28770
77.33 96.69 96.69

Hostile_AA_Ftr_06
99.27

502.22 Escort_02/02
45.00 83.36 50.78
502.30 Escort_02/01

45.00 90.85 52.54
502.78 AA_Ftr_04/02

0.36 45.00 99.92 72.74

0.06

67.79

68.13

359.33

357.97

359.89

359.09

1.25

359.81

351.5!

76.86

77.28

348.23

76.86

77. 2i

50.00

0.18

359.89

499.18
99.60

80.00

14.92

53.83

38.51

39.05

504.57 Missile_28769
98.89 98.89

504.67 Hostile_AA_Ftr_05
50.00 100.00 99.99

506.00 Missile 28770
99~."34 99.34

Missile 28771
86.50 86.50

510.68 Ml'ssxie^28772
70.00 86.81 86.81

80.00
510.07
70.00

Escort_01/01

Area_Defense_SAM_01

Area_De fense_SAM_0

1

Escort_01/01

AA_Ftr_05/02

AA_Ftr_04/02

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/01

Hostile_AA_Ftr_03/04

Escort_01/02

Asset_Def_SAM_01

Asset_Def_SAM_01

Escort_01/02

Asset_Def_SAM_01

Asset_Def_SAM_01

Point_De f_SAM_0 1/02

Hostile_AA_Ftr_03/04

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/02

Asset_Def_SAM_01

Point_Def_SAM_01/01

Asset_Def_SAM_01

Area_Defense_SAM_01

Area Defense SAM 01

3176 226.40

107808 32.84

108038 33.25

3079 247.68

16967 232.11

11151 149.66

1848 316.02

10180 260.68

5239 306.67

4426 193.21

28747 30.86

29287 31.34

2857 212.12

28747 30.86

29287 31.34

3044 25.54 25.01

5973 253.56

16203 251.22

4483 277.24

7921 40.39 52.20

3588 290.57

8242 40.36

46746 38.80

46974 38.90

165

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

El

Time
SSPK

(Seconds)
Deg)

PKCum
Target

Route
ID

PK

Engager

ID

Range

(m)

Az

(Deg)

510.87 AA_Ftr_04/02
45.00 99.96 73.32

511.20 Escort_02/01
45.00 94.97 53.19

513.97 Hostile_AA_Ftr_06
34.93 99.74 99.53

517.42 AA_Ftr_04/02
45.00 99.98 73.88

522.31 Escort_02/02
45.00 90.85 51.45

525.44 AA_Ftr_04/01
45.00 100.00 97.32

533.88 AA_Ftr_04/01
45.00 100.00 97.42

552.38 AA_Ftr_04/02
45.00 99.99 74.43

556.23 Hostile_AA_Ftr_03/04 Escort_02/01
70.00 99.09 97.97

564.37 Missile 28791
62.05 62.05 62.05

565.36 Missile 28790
53.11 53.11 53.11

565.66 AA_Ftr_04/02
45.00 99.99 74.97

570.06 AA_Ftr_04/01
45.00 100.00 97.51

597.53 Missile 28791
88.62 88.62

Hostile_AA_Ftr_03/02

Hostile_AA_Ftr_03/04

Point_Def_SAM_0 1/02

Hostile_AA_Ftr_03/02

Hostile_AA_Ftr_03/04

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/03

Hostile_AA_Ftr_03/02

Area_De fense_SAM_0

1

Area_Defense_SAM_01

Hostile_AA_Ftr_03/02

Hostile_AA_Ftr_03/03

Area_Defense_SAM_01

Area Defense SAM 01

70.00
603.50 Missiie;2,875P

70.00 85.93 $5193
605.72 HosTile_AA_Ftr_03/02 AA_Ftr_04/02

70.00 99.84 96.15
617.64 Hostile_AA_Ftr_03/04 AA_Ftr_04/02

70.00 99.73 98,^3_2

618.01 Missile 28791 Asset_Def_SAM_01
80.00 97.72 97.72

630.44 Hostile_AA_Ftr_03/03 AA_Ftr_04/02
70.00 99.66 93.41

728.48 Red_AG_Ftr_01/03 Asset_Def_SAM_03
80.00 99.70 99.70

730.89 Red_AG_Ftr_01/04 Asset_Def_SAM_03
80.00 99.73 99.73

733.69 Hostile_AA_Ftr_03/03 Point_Def_SAM_01/02
50.00 99.83 96.71

734.12 Red_AG_Ftr_02/03 Asset_Def_SAM_03
80.00 99.99 99.97

736.53 Red_AG_Ftr_02/04 Asset_Def_SAM_03
80.00 99.84 99.67

1584 252.14 0.53

4296 289.22 359.86

7364 350.80 11.00

576 125.57 3.61

4713 320.59 359.76

2449 126.92 10.29

1700 132.01 20.23

3656 321.05 358.82

12539 107.59 0.23

102045 11.98 77.55

109681 3.61 66.20

3437 325.46 358.76

3652 343.47 357.82

43960 13.81 67.76

49318 2.78 37.03

8802 148.87 359.79

3305 91.28 8.55

8940 25.60 19.72

2640 72.03 11.51

5578 357.02 1.55

6161 0.73 0.67

4502 356.60 12.61

6740 359.01 0.87

7354 2.12 0.50

166

PAPA Report

Scenario: Demo300 Report generated on Thu May 6 07:43:10 1999

Report Type: PK HISTORY

PAPA PK Legend

SSPK Single Shot PK
PKCum Cumulative PK Of Individual Shots
Route PK Total PK For Killing Target

Time
El SSPK

(Seconds)
Deg)

Target
PKCum Route

ID
PK

Engager

ID

Range

(m)

Az

(Deg)

Asset Def SAM 03738.94 Red_AG_Ftr_01/01
80.00 97.00 93.85

741.38 Hostile_AA_Ftr_03/01 Point_Def_SAM_01/02
35.47 98.26 86.71

741.48 Red_AG_Ftr_02/01
80.00 99.35 98.26

749.27 Red_AG_Ftr_01/03
80.00 99.94 99.94

752.45 Red_AG_Ftr_02/03
80.00 100.00 99.99

755.13 Red_AG_Ftr_02/04
80.00 99.97 99.93

760.71 Red_AG_Ftr_02/01
80.00 99.87 99.65

763.65 Red_AG_Ftr_01/01
80.00 99.40 98.77

7 67.08 Red_AG_Ftr_01/02
80.00 98.20 98.20

7 69.41 Red_AG_Ftr_02/02
80.00 91.52 91.52

782.4 6 Red_AG_Ftr_02/03
80.00 100.00 100.00

791.40 Red_AG_Ftr_02/01
80.00 99.97 99.93

800.27 Red_AG_Ftr_01/0 4

80.00 99.95 99.95
800.30 Red_AG_Ftr_01/01

80.00 99.88 99.75

800.47 Red_AG_Ftr_02/04
80.00 99.99 99.99

806.14 Red_AG_Ftr_01/03
80.00 99.99 99.99

819.71 Red_AG_Ftr_02/02
80.00 98.30 98.30

829.20 Red_AG_Ftr_02/03
80.00 100.00 100.00

866.89 Red_AG_Ftr_02/04
80.00 100.00 100.00

883.28 Red_AG_Ftr_01/03
80.00 100.00 100.00

884.89 Hostile_AA_Ftr_03/04 Point_Def_SAM_01/02
50.00 99.86 99.16

904.15 Hostile_AA_Ftr_03/02 Point_Def_SAM_01/02
50.00 99.92 98.07

927.38 Red_AG_Ftr_02/04 Asset_Def_SAM_03
80.00 100.00 100.00

953.2 6 Red_AG_Ftr_02/03 Asset_Def_SAM_03
80.00 100.00 100.00

Asset_Def_SAM_03

As s et_De f_SAM_0 3

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

As s et_De f_SAM_0 3

As s et_De f_SAM_0 3

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

As s et_De f_SAM_0 3

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset_Def_SAM_03

Asset Def SAM 03

7903 353.06 0.41

7329 8.35 9.40

8577 353.73 0.36

10175 2.50 0.40

10795 4.11 0.04

11490 8.15 0.12

12938 356.21 0.25

13864 354.14 0.36

14537 348.55 0.34

15437 353.74 0.26

18824 14.64 0.43

21310 346.55 0.27

20742 2.52 0.10

24526 346.44 359.93

15338 45.44 0.36

26455 348.84 0.12

30302 4.25 0.22

27968 351.93 0.11

22466 22.82 0.41

43355 3.17 0.14

5519 323.68 12.12

5145 341.00 14.36

39697 1.32 0.26

52871 358.04 359.99

167

168

APPENDIX K. PSTAT OUTPUT: DETERMINISTIC TRIALS

Note: Each page displays data gathered from unwrapped executables above data from wrapped

executables (C3I, FP, Det).

Descriptive Statistics

37.8 3S2
1

3a6
1

39.0 39.4

(&&V9J far ^Ai95° o Confidence \r

3S
-"j

OC'+ OCw On.D

95% Confidence interval for Vtedan

Variable: C3I

Qmulative CPU Times

(inwrapped c3i.pstat)

Anderson-Darling NormalityTest

A-Squared: 0.465

P-Value:

Ivfean

StDev
Variance

Skewness
Kurtosis

N

Mnimum
Istdiartile

rvfedan

3rdQjartile

Maamum

0236

38.5063

0.4658

0216996
0.609695

-5.1E-01

30

37.8800

38.1325

38.4750
38.7900

39.5600

95% Confidence Interval for Mj

38.3324 38.6803

95%Confidence Interval for Sgma
0.3710 0.6262

95% Confidence Interval for fvtedan

382046 38.6477

Descriptive Statistics

39.0 39"

95% Confidence Interval for Mi

39 4 33 5 39 6 397

Variable: C3I

Cunulative CPU Time

(c3i.pstat)

Axterson-Darling NormalityTest

ASquared 2236
P-Value:

Ivfean

StDev
Variance

Skewness
Kurtosis

N

Mnimum
IstCuartile

Median
3rdQjartile

Ma»mum

0.000

39.3937

0.7044

0.496127

1.07294

0.315679

30

38.1800

38.9925

39.1150

39.6700

41.1200

> Confidence- Inters! for fifedan

95%Confidence Interval fa Mj

39.1307 39.6567

95% Confidence Interval for Sgma

0.5610 0.9469

95% Confidence Interval for Median

39.0100 39.3400

169

Descriptive Statistics

95° r Confidence Interval for Mj

24.35 24.45 24.55 24.65 24.75 24.85 24.96 25.05 25.15

: : I I ! I I I I

Variable: FP
Cumulative CPU Times

(unwrapped fp.pstat)

Aiderson-Darling NormalityTest

/VSquarect 4.232

P-Value:

Mean
StDev
Variance

Skewness
Kurtosis

N

Mnimum
IstQjartile

Median
3rdOiartile

Maxmum

0.000

24.7327

0.9188

0.844179

3.87271

162088
30

23.8600

24.3925

24.5450
24.8150

292300

95° o Confidence Interval for Median

95% Confidence Interval for Mj

24.3896 25.0757

95% Confidence Interval fa Sigma

0.7317 12351

95% Confidence Interval for Median

24.4200 24.6809

Descriptive Statistics

95% Confidence Interval for Mj

24.4 24.9

I

25.4

95 J
o Confidence interval for Median

Variable: FP
Cumulative CPU Time

(fp.pstat)

ATderson-Darling NormalityTest

A-Squared: 5.549

P-Value: 0.000

Mean
StDev
Variance

Skewness
Kurtosis

N

24.8813

12281
1.50816

429112
18.8038

30

Mnimum
IstQjartle

Median
3rdQuartile

Maxmum

242200
24.4250

24.5400

24.8925

31.0900

95% Confidence Interval for Mj

24.4228 25.3399

95% Confidence Interval for Sigma

0.9780 1.6509

95% Confidence Interval for Median

24.4423 24.7577

170

Descriptive Statistics

275 28.5 29.5 30.5 31.5 32.5

95% Confidence interna] for Mi

28.5

{

"'" ""

"

29.1 29.6

95% Confidence interval for fvtedian

Variable: Detect

Cumulative CPU Times

(unwrapped det.pstat)
Anderson-Darling NormalityTest

A-Squared 0.925

P-Value: 0.016

fvtean 292117
StDev 1.0877

Variance 1.18299

Skewness 0.943513

Kurtosis 1.33429

N 30

Mnimum 27.4300

IstQuartile 28.3475

(vidian 29.2400
3rdCuartile 29.6775

Maxmum 324400

95% Confidence Interval for Mi

28.8055 29.6178

95% Confidence Interval for Sigma

0.8662 1.4622

95% Confidence Interval for Median

28.6926 29.6471

Descriptive Statistics

95% Confidence- interval forM
un

i

38.1

i

38.2 38.3 38.4

|

95% Confidence interval for Median

Variable: Detect

Cumulative CPU Time

(detect, pstat)

Anderson-Darling NormalityTest

ASquared: 1.014

P-Value: 0.010

Mean 382990
StDev 0.3719
variance 0.138306

Skewness 0.907432

Kurtosis -1.1E01

N 30

Mnimum 37.7900

IstCuartjIe 38.0375

Median 38.1800
3rdCiiartile 38.5175

Maxmum 39.1700

95% Confidence Interval for Mi

38.1601 38.4379

95%Confidence Interval for Sgma
02962 0.4999

95% Confidence Interval for Median

38.1014 38.3631

171

172

APPENDIX L: ACRONYMS

AE Application Emulator

AOR Area of Responsibility

ATO Air Tasking Order

BMDO Ballistic Missile Defense Organization

C2 Command and Control

C3 Command, Control, and Communications

C3ISIM Command, Control, Communications, and Intelligence Simulation

C4I Command, Control, Communications, Computers, and Intelligence

CL Client Library

COMPASS Common Operational Modeling, Planning, and Simulation Strategy

COTS Commercial Off the Shelf

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DCA Defensive Counter-Air

DCP Distributed Collaborative Planning Tools

DII COE Defense Information Infrastructure Common Operating Environment

DoD Department of Defense

EADSIM Extended Air Defense Simulation (formerly C3ISIM)

EEL Executable Editing Library

ETC Expected Time to Compute

FEZ Fighter Engagement Zone

FISC Flexible Integrated System Capability

FP Flight Processing

GB Gigabyte

GCCS Global Command and Control System

GOTS Government Off the Shelf

GUI Graphic User Interface

HUMINT Human Intelligence

I/O Input and/or Output

IMINT Imagery Intelligence

IPC Inter Process Communication

IR Infrared

M&S Modeling and Simulation

MB Megabyte

Mb/s Megabit per Second

MD MSHN Daemon
MEZ Missile Engagement Zone

MOE Measure of Effectiveness

MHz Megahertz

MIPS Millions of Instructions Per Second

MRS Multiple Rocket System

MSHN Management System for Heterogeneous Networks

NCA National Command Authority

NFS Network File System

NFS Network File Service

NAS Numerical Aerodynamic Simulation

OMA Object Management Group

ORB Object Request Broker

Pk Probability of Kill

PSI-ID Protocol Stack Instance Identifier

PSP Protocol System Protocol

QoS Quality of Service

RAM Random Access Memory

173

ROM Read Only Memory
RMS Resource Management System

RPC Remote Procedure Call

RRD Resource Requirements Database

RSS Resource Status Server

SA Scheduling Advisor

SAM Surface to Air Missile

SEAD Suppression of Enemy Air Defense

SIGINT Signals Intelligence

SMDC Space and Missile Defense Command
SPAWAR Space and Naval Warfare

TBE Teledyne Brown Engineering

TBM Tactical Ballistic Missile

TMD Theater Missile Defense

174

LIST OF REFERENCES

[ARMS97] Robert Armstrong, Investigation of Effect ofDifferent Run-Time

Distributions on SmartNet Performance, Master's Thesis, Naval

Postgraduate School, Monterey, California, September 1997.

[ANTH98] Robert W. Anthony, GCCS Evolution: Past, Present, and Future,

Proceedings of the 1998 Command and Control Research and

Technology Symposium, Naval Postgraduate School, Monterey,

California, 1998.

[BERK9 1] Berkeley Unix Distribution, Unix Man Pages, March 1 99 1

.

[BRUN97] Matthias Brune, Jorn Gehring, and Alexander Reinefeld, Heterogeneous

Message Passing and a Link to Resource Management, Journal of

Supercomputing, Vol 11, 1-17, 1997.

[CASE91] Fred Case, Christopher Hines, and Steven Satchwell, Analysis ofAir

Operations During Desert Shield / Desert Storm, U.S. Air Force Studies

and Analyses Agency, 1991.

[CARF99] Paul Carff, Analysis on Resource Usage Information Granularity

Requiredfor Optimal Scheduling, Master's Thesis, Naval Postgraduate

School, Monterey, California, March 1999.

[CEBR98] VADM Arthur K. Cebrowski, USN, John J. Garstka, Network-Centric

Warfare: Its Origin and Future, Naval Institute Proceedings, Naval

Institute Press, January 1998.

[CHENOO] Cheng Heng Nom, Testing of Various Instrumentation Resource

Monitoring Tools on Win32/Intel Platform for MSHN's Applications,

Master's Thesis, Naval Postgraduate School, Monterey, California,

expected March 2000.

[COMP99] Commander William Schlichter, Common Operational Modeling,

Planning and Simulation (COMPASS) Project History,

http://skyraider.spawar.navy.mil, January 1999.

[COOK99] Thomas S. Cook, Dynamically Determining Distribution Statisticsfor

Resources in a Distributed Environment, Master's Thesis, Naval

Postgraduate School, Monterey, California, expected September 1999.

175

[DESI98] Dr. Roberto Desimone, Andrew Preece, and Simon Hall, Improving

Command Decision Making through the Integration of Joint Planning

Aids into C2 Systems, Proceedings of the 1998 Command and Control

Research and Technology Symposium, Naval Postgraduate School,

Monterey, California, 1998.

[DOLG99] Max Dolgicer, CORBA and JAVA: Marriage or Just Serious Dating?,

Application Development Trends Magazine, Vol. 6, Number I, January

1999.

[DRAK99] Tim Drake, Distributed Real Time Application Emulator, Master's

Thesis, Naval Postgraduate School, Monterey, California, expected June

1999.

[DUMA98] Alpay Duman, Design, The Use and Run-time Overhead ofCORBA in

MSHN Project, Master's Thesis, Naval Postgraduate School, Monterey,

California, September 1998.

[EADS98] Teledyne Brown Engineering, EADSIM Version 7.0, August 1998.

[FREU98] R. F. Freund and others, Scheduling Resources in Multi-user,

Heterogeneous, Computing Environments with SmartNet, Proceedings

Eighth Heterogeneous Computing Workshop, IEEE Computer Society,

Los Alamitos, California, March 1998.

[HAYD97] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd,

and David Karr, Building Adaptive Systems Using Ensemble, Cornell

University Technical Report, TR97-1638, July 1997.

[HENS99] Debra A. Hensgen and others, An Overview of MSHN: The

Management System for Heterogeneous Networks, Proceedings Eighth

Heterogeneous Computing Workshop(HCW '99), IEEE Computer

Society, Los Alamitos, California, 1999.

[JAIN9 1] Raj Jain, The Art of Computer Systems Performance Analysis, John

Wiley and Sons, Inc., New York, 1991.

[JOIN9 1] Joint Chiefs of Staff, Joint Warfare of the US Armed Forces,

Washington, D.C., November 1991.

[JONG99] Jong-Kook Kim and others, Priorities, Deadlines, Versions, and

Security in a Performance Measure Frameworkfor Distributed

Heterogensous Networks. In preparation for submission (1999).

[JOVI95] Joint Chiefs of Staff, Joint Vision 2010, Washington, D.C., 1995.

176

[KELT91] Avrill M. Law, W. David Kelton, Simulation Modeling and Analysis, 2d

Edition, McGraw-Hill, New York, 1991.

[KIDD96] Taylor Kidd, Debbie Hensgen, Richard Freund, and Lantz Moore,

"SmartNet: A Scheduling Framework for Heterogeneous Computing,"

ISPAN, 1996.

[KIDD98] Taylor Kidd, Debra Hensgen, Richard Freund, Matt Kussow, and Mark
Campbell, Compute Characteristics: A Useful Characterization ofJob

Run-times. In preparation for submission (1998).

[KIDD99] Taylor Kidd and others, Compute Characteristics, Technical Report in

progress, Naval PostGraduate School, Monterey, California, 1999.

[LARU95] James Larus and Eric Schnarr, EEL: Machine-Independent Executable

Editing, SIGPLAN PLDI 95, 1995.

[LIYN95] Miron Livny, Michael Litzkow, Todd Tannenbaum, and Jim Basney,

Checkpoint and Migration of UNIX Processes in the Condor Distributed

Processing System, Dr Dobbs Journal, February 1995.

[METH98] Teledyne Brown Engineering, EADSIM Version 7.0 Methodology

Manual, August 1998.

[MCSW99] CDR Donald W. McSwain, COMPASS and Collaborative Virtual

Workspace (A PowerPoint Brief) http://skyraider.spawar.navy.mil,

February 1999.

[MOOR95] Lantz Moore and others, Graze: A Toolfor Performance Visualization

and Analysis, International Conference on Parallel Processing, 1995.

[MSMP95] Department of Defense Publication DoD 5000.59-P, Modeling and

Simulation Master Plan, October 1995.

[NOBL97] Brian Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric

Tilton, Jason Flinn, and Kevin R. Walker, "Agile Application-Aware

Adaptation for Mobility," Proceedings of the 16
th
Symposium on

Operating Systems, 1997.

[NSTB96] National Research Council, Computing and Communications in the

Extreme, National Academy Press, Washington, D. C, 1996.

[PEND93] William S. Pendergrass, Combat Analysisfor Command, Control, and

Communications: A Primer, 1993 Edition, Master's Thesis, Naval

Postgraduate School, Monterey, California, September 1997.

177

[PUCA96A] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan,

Jon Inouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang,

Optimistic Incremental Specialization: Streamlining a Commercial

Operating System, Oregon Graduate Institute, 1996.

[PUCA96B] Calton Pu, Tito Autrey, Jonathan Walpole, Crispin Cowan, and Charles

Krasic, Fast Concurrent Dynamic Linkingfor an Adaptive Operating

System, Oregon Graduate Institute, 1996.

[QUIN] Bob Quinn, Dave Shute, Windows Sockets Network Programming,

Addison-Wesley, Reading Massachusetts, 1996.

[REED96] Daniel A. Reed and others, I/O, Performance Analysis, and

Performance Data Immersion, Proceedings of MASCOTS96, 1996.

[REND97] Barry Render and Ralph M. Stair, Jr, Qulaitative Analysisfor

Management, 6th Edition, Prentice Hall, New Jersey, 1997.

[SCHM99] Douglas C. Schmidt, Overview ofCORBA,
http://www.cs.wustl.edu/~schmidt/corba-overview.html , February 1999.

[SCHN98] Matthew C. L. Schnaidt, Design, Implementation, and Testing of

MSHN's Application Resource Monitoring Library, Master's Thesis,

Naval Postgraduate School, Monterey, California, September 1997.

[SHAEOO] Blanca Shaeffer, Refining a Modelfor Use in Scheduling in MSHN,
Naval Postgraduate School, Master's Thesis, Monterey, California,

expected March 2000.

[SING94] Mukesh Singhal, Niranjan G. Shivaratri, Advanced Concepts in

Operating Systems, McGraw-Hill, Inc., New York, 1994.

[SKJD99] Shirley Kidd and Matthew Schnaidt, Tutorial on Wrapping Calls, Naval

Postgraduate School, 1999.

[SMDC97] US Army Space and Missile Defense Command, EADSIM Brochure

and information packet, 1997, 1998.

[SNYD93] Frank M. Snyder, Command and Control The Literature and

Commentaries, National Defense University, Washington, D.C., 1993.

[TBMC97] Lockheed Martin Command and Control Systems, White Paper TBMCS
Vision Today's Look at Tomorrow's System, Colorado Springs,

Colorado, September, 1997.

178

[TELE98] Teledyne Brown Engineering, EADSEM Training Course, October 1998.

[UTAR96] Laboratory for Parallel and Distributed Real-time Systems,

DeSiDeRaTa: Resource and QoS Managementfor Dynamic, Scalable,

Dependable Real-Time Systems, University of Texas at Arlington, 1996.

[VIN096] Steve Vinoski, CORBA: Integrating Diverse Applications Within

Distributed Heterogeneous Environments, IEEE Communications

Magazine, Vol. 35, No. 2, February 1997.

179

180

INITIAL DISTRIBUTION LIST

1

.

Defense Technical Information Center.

8725 John J. Kingman Road, Ste 0944

Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 DyerRd.

Monterey, California 93943-5101

3. Chairman, Code CS
Computer Science Department

Naval Postgraduate School

Monterey, CA 93940-5000

Dr. Debra Hensgen 10

Computer Science Department, Code CS/Hd
Naval Postgraduate School

Monterey, California 93943-5100

Dr. William G. Kemple 1

Command, Control, Communications Academic Group, Code CC/Ke
Naval Postgraduate School

Monterey, California 93943-5100

LCDR Wayne Porter 2

910 N. Harbor Blvd. Apt 216

La Habra, CA 90631

7. Mr. Brad Cooper

Teledyne Brown Engineering

300 Sparkman Drive (Mail Stop 105)

Huntsville, AL 35805

8. Dr. Gary Koob
DARPA / ITO
3701 North Fairfax Drive

Arlington, VA 22203-1714

9. Mr. Jim Watkins

U.S. Army Space and Missile Defense Command
P.O. Box 1500

Huntsville, AL 35807-3801

181

69 TBitt I
6/02 22521-»°"L*

